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Abstract

In this chapter some further aspects of the group theoretical construction of the configura-
tion space geometry are considered. If Kähler action were strictly deterministic, the construc-
tion of the configuration space geometry would reduce to δH = δM4

+ ×CP2. Mathematically
this would be simple and elegant but physically a catastrophe. The classical non-determinism
of Kähler action however destroys the hopes/fears about quantum gravitational holography
in the simplest sense of the word.

The failure of the classical non-determinism forces to introduce two kinds of causal deter-
minants (CDs). 7-D light like CDs are unions of the boundaries of future and past directed
light cones in M4 at arbitrary positions (also more general light like surfaces X7 = X3

l ×CP2

might be considered). CH is a union of sectors associated with these 7-D CDs playing in
a very rough sense the roles of big bangs and big crunches. The time reflection of negative
energy space-time sheets to positive energy space-time sheets occurs at X3 ⊂ X7.

Also 3-D light like causal determinants X3
l ⊂ X4 must be introduced: elementary particle

horizons provide a basic example of this kind of CDs. For the light like 3-D CDs X3
l ⊂ X4

the conformal symmetries correspond to the isometries of the imbedding space localized with
respect to the complex coordinate of the 2-surface determining the light like 3-surface X3

l so
that Kac-Moody type symmetry results. The notion of quantum gravitational holography
suggests that the data about configuration space geometry and even quantum TGD is coded
to these light like CDs.

7–3 duality which be seen as the analog of field particle duality realizes quantum gravita-
tional holography: particle aspect would correspond to the spinor shock waves restricted at
X3

l and field aspect to the dynamics of the interior of X4. 7–3 duality states that the two CDs
play a dual role in the construction of the theory and implies that 3-surfaces are effectively
two-dimensional with respect to the CH metric in the sense that all relevant data about CH
geometry is contained by the two-dimensional intersections of 7-D and 3-D CDs. This is due
to the additional invariance due to the degeneracy of the metric with respect to the deforma-
tions of light like X3

l which preserve its intersections with X7 and very much analogous to
conformal symmetry.

This duality has deep implications for quantum TGD. For instance, the super-canonical
isometry algebras associated with 7-D CDs resp. super Kac-Moody algebras associated with
3-D CDs can be seen as defining non-zero mode resp. zero mode sectors of the tangent space
of CH defining quantal resp. classical degrees of freedom in 1-1 correspondence by the basic
postulate of TGD inspired quantum measurement theory. Accordingly, the two super algebras
play dual roles in the construction of quantum theory. The most dramatic implication effective
2-dimensionality is the equivalence of the generalized Feynman diagrams represented by 3-D
CDs to tree diagrams since only the end points X2

i at 7-D CDs matter. This means a resolution
of the problem caused by the perturbative divergences in quantum theory. 7-3 duality has
also practical implications. For instance, one can deduce Kähler function easily in terms of
Dirac determinants associated with the 3-D CDs and Kähler metric easily from the data at
7-D CDs.

Divergences, which have plagued quantum field theories since their discovery, are basically
due to the micro-locality of quantum field theories. In TGD framework 3-surface becomes the
basic dynamical object instead of point like particle and physics is local only at the level of
configuration space whereas Kähler function is a non-local functional of 3-surface. This does
not however eliminate all sources of divergences. The cancellation of metric and Gaussian
determinants in the configuration space functional integral eliminates the TGD counterparts
of the standard divergences of quantum field theories. In higher orders divergence cancellation
implies Ricci flatness. The conditions guaranteing Ricci flatness are discussed and it is shown
that the basic Lie-algebraic properties implied by the symmetric space metric property imply
Ricci flatness.

The so called Hyper Kähler property meaning the existence of quaternionic structure in the
tangent space of the configuration space would imply Ricci flatness and the quaternion struc-
ture of space-time surface forces to take seriously the possibility of Hyper Kähler structure.
Contrary to the earlier expectations, it seems that Hyper Kähler property means that sphere
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S2 labels the possible complexifications. The choice of the imaginary unit reduces basically to
the choice of the quantization axis for the rotation group SO(3) for rM = constant sphere at
the light cone boundary so that S2 parameterizes the possible choices. Analogous argument
applies also to the quaternion(!) conformal contribution to the configuration space metric.

1 Introduction

In this chapter the discussion related to the group theoretical construction of the configuration
space geometry is continued. If Kähler action were strictly deterministic, the construction of
the configuration space geometry would reduce to δH = δM4

+ × CP2. The failure of classical
non-determinism of the Kähler action does not however allow to realize quantum gravitational
holography in the simplest sense of the word. One can however consider a generalization of the
notion of both quantum classical determism and the quantum holography.

1.1 The challenges posed by the non-determinism of Kähler action

The vision discussed in this chapter is far from a complete solution to the problem of constructing
the configuration space geometry. The non-determinism of Kähler action means that the reduction
of the construction of the configuration space geometry to the light cone boundary fails. Besides
degeneracy of the absolute minima of Kähler action, the non-determinism should manifest itself
as a presence of causal determinants also other than light cone boundary. One can imagine two
kinds of causal determinants.

1. Elementary particle horizons and light-like boundaries X3
l ⊂ X4 of 4-surfaces. In this case

only Super-Kac-Moody type conformal algebra makes sense.

2. Causal determinants could also correspond to light like 7-surfaces of X3
l × CP2 ⊂ H =

M4 × CP2 or perhaps even more general light like 7-surfaces of H. It would be a pity if
Nature would have not expressed physically the extremely elegant mathematic associated
with the light like surfaces. Hence the intuitive and somewhat irrational expectation is that
super-canonical algebra emerges in some natural manner also for these more general light
like surfaces.

3. The light-like 7-surfaces X3
l ×CP2 allow super-canonical symmetries whereas for completely

general light like surfaces X7
l ⊂ H this symmetry is broken. Hence mathematical elegance

does not favor these surfaces. The requirement that that X3
l ⊂ M4 is non-singular and

allows Lorentz group as isometries, leaves only the option X4
l = δM4

± with ± telling whether
a boundary of a future or past light cone is in question.

4. An elegant looking manner to take into account the non-determinism is motivated by TGD
inspired cosmology: replace the configuration space CH associated with the future light cone
with the union of configuration spaces associated with all possible unions of future and past
light cones M4

± × CP2 with dips at arbitrary points of M4. This would make the theory
Poincare invariant and super-canonical algebra allows string mass formula with translations
realized as translations of an entire sector of configuration space. An attractive hypothesis
is that this is enough to take into account the non-determinism of Kähler action and that
there exists a duality in the sense that the use of 7-D and 3-D light like causal determinants
(imbedding space level and space-time level) provide dual approaches to the construction
of the configuration space geometry. The dual construction utilizing 3-D light like causal
determinants will be discussed in the next chapter.
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1.2 Category theory and configuration space geometry

Due the effects caused by the classical non-determinism even classical TGD universes are very far
from simple Cartesian clockworks, and the understanding of the general structure of the configura-
tion space is a formidable challenge. Category theory is a branch of mathematics which is basically
a theory about universal aspects of mathematical structures. Thus category theoretical thinking
might help in disentangling the complexities of the configuration space geometry and the basic
ideas of category theory are discussed in this spirit and as an innocent layman. It indeed turns
out that the approach makes highly non-trivial predictions. So called ribbon categories discussed
in [C5] seem to be tailor made for the formulation of quantum TGD and allow to build bridge to
topological and conformal field theories.

1.3 Super-conformal symmetries and duality

There are two types of causal determinants (CDs) corresponding to 7-surfaces X3
l ×CP2 of imbed-

ding space and light like 3-surfaces of space-time surface. The basic question is whether both of
them contribute separately to the configuration space geometry or whether they provide descrip-
tions which are in some sense dual.

Duality would allow to organize various super conformal symmetries to dual pairs.

1. In [B4] it will be found that 3-D light like CDs allow genuinely 3-D solutions of the mod-
ified Dirac equation, kind of spinorial shock waves besides four-dimensional solutions. The
interpretation of elementary particles as this kind of spinorial shock waves is an extremely
attractive option. By the metric 2-dimensionality of light like 3-D CDs a slight generalization
of ordinary 2-D super-conformal invariance is involved. Note that the role of light like 3-D
CDs are very much like closed string world sheets.

2. Number theoretic argument lead to the hypothesis that also the interior of space-time surface
allows conformal invariance in some sense. The first identification is as quaternion conformal
invariance acting as a gauge invariance. Second, one might hope equivalent, identification is
as Abelian 4-D conformal invariance based on the generalization of hyper-complex numbers
whose action is realized in terms of sigma matrices. Both super conformal symmetries would
act as pure gauge symmetries and give rise to N = 4 super gauge symmetries. A natural
interpretation would be in terms of quantum holography: the super-conformal gauge sym-
metries in the interior and at 3-D causal determinants and correspond to field and particle
aspects of field particle duality.

3. One can assign to the conformal gauge symmetries of 7-D CDs what I have used to call super-
canonical invariance and to the conformal symmetries of 3-D light like CDs super Kac-Moody
algebra crucial for p-adic mass calculations. Duality would mean that the two descriptions
of quantum would be dual. This would resolve the difficult question like ”Do both 3-D and
7-D causal determinants contribute separately to the configuration space geometry?”. In
[B4] it will be found that the Dirac determinant associated with the modified Dirac action at
3-D light like CDs indeed allows to construct configuration space geometry: this description
would be dual to the construction of the previous chapter.

1.4 Divergence cancellation and configuration space geometry

Divergences, which have plagued quantum field theories since their discovery, are basically due
to the micro-locality of quantum field theories. In TGD framework 3-surface becomes the basic
dynamical object instead of a point like particle and physics is local only at the level of configuration
space whereas Kähler function is a non-local functional of the 3-surface: this eliminates the loop
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divergences resulting from the local interaction vertices in quantum fluctuating degrees of freedom.
The localization occurring in each quantum jump in zero modes and having interpretation as state
function reduction saves from the divergences related to the lack of Gaussian integration in zero
modes.

This does not however eliminate all sources of divergences. The cancellation of metric and Gaus-
sian determinants in the configuration space functional integral eliminates the TGD counterparts
of the standard divergences of quantum field theories. In higher orders divergence cancellation
implies Ricci flatness. The conditions guaranteing Ricci flatness are discussed and it is shown that
the basic Lie-algebraic properties implied by the symmetric space metric property imply Ricci
flatness.

The so called Hyper Kähler property meaning the existence of hyper-quaternionic structure
[E2] in the tangent space of the configuration space would imply Ricci flatness and the quaternion
structure of space-time surface forces to take seriously the possibility of Hyper Kähler structure.
Contrary to the earlier expectations, it seems that Hyper Kähler property means that sphere S2

labels the possible complexifications. The choice of the imaginary unit reduces basically to the
choice of the quantization axis for the rotation group SO(3) for rM = constant sphere at the light
cone boundary so that S2 parameterizes the possible choices. Analogous argument applies also to
the quaternion(!) conformal contribution to the configuration space metric.

Number theoretic constraints from p-adicization of the theory sharpen the requirement about
divergence cancellation: loops are not only finite but vanish. For generalization Feynman diagrams
analogous to tangles with chords this corresponds to the equivalence loop diagrams with tree
diagrams: a generalization of the duality symmetry of string models is in question. In [C5] these
ideas are developed in detail.

2 How to generalize the construction of configuration space
geometry to take into account the classical non-determinism?

If the imbedding space were H+ = M4
+ × CP2 and if Kähler action were deterministic, the con-

struction of configuration space geometry reduces to δM4
+ × CP2. Thus in this limit quantum

holography principle [16, 17] would be satisfied also in TGD framework and actually reduce to
the general coordinate invariance. The classical non-determinism of Kähler action however means
that this construction is not quite enough and the challenge is to generalize the construction. The
following considerations support the notion of duality stating that configuration space geometry
and quantum TGD can be constructed either by using 7-D light like causal determinants of the
imbedding space as done in [B2] or 3-D light like causal determinants of space-time surface as done
in [B4].

2.1 Quantum holography in the sense of quantum gravity theories

In string theory context quantum holography is more or less synonymous with Maldacena conjec-
ture [16] which (very roughly) states that string theory in Anti-de-Sitter space AdS is equivalent
with a conformal field theory at the boundary of AdS. In purely quantum gravitational context
[17], quantum holography principle states that quantum gravitational interactions at high en-
ergy limit in AdS can be described using a topological field theory reducing to a conformal (and
non-gravitational) field theory defined at the time like boundary of the AdS. Thus the time like
boundary plays the role of a dynamical hologram containing all information about correlation
functions of d+ 1 dimensional theory. This reduction also conforms with the fact that black hole
entropy is proportional to the horizon area rather than the volume inside horizon.
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Holography principle reduces to general coordinate invariance in TGD. If the action prin-
ciple assigning space-time surface to a given 3-surface at light cone boundary were completely
deterministic, four-dimensional general coordinate invariance would reduce the construction of the
configuration geometry for the space of 3-surfaces in M4

+×CP2 to the construction of the geometry
at the boundary of the configuration space consisting of 3-surfaces in δM4

+ ×CP2 (moment of big
bang). Also the quantum theory would reduce to the boundary of the future light cone.

The classical non-determinism of Kähler action however implies that quantum holography in
this strong form fails. This is very desirable from the point of view of both physics and consciousness
theory. Classical determinism would also mean that time would be lost in TGD as it is lost in
GRT. Classical non-determinism is also absolutely essential for quantum consciousness and makes
possible conscious experiences with contents localized into finite time interval despite the fact
that quantum jumps occur between configuration space spinor fields defining what I have used to
call quantum histories. Classical non-determinism makes it also possible to generalize quantum-
classical correspondence in the sense that classical non-determinism at the space-time level provides
correlate for quantum non-determinism. The failure of classical determinism is a difficult challenge
for the construction of the configuration space geometry. One might however hope that the notion
of quantum holography generalizes.

2.2 How the classical determinism fails in TGD?

The failure of classical determinism seem to have very many aspects and in the following I only
try to list some of the most obvious aspects of the classical non-determinism.

2.2.1 Enumerable degeneracy of absolute minima is probably too much to hope

One might hope that determinism in a generalized sense might be achieved by generalizing the
notion of 3-surface by allowing unions of space-like 3-surfaces with time like separations with
very strong but not complete correlations between the space-like 3-surfaces. In this case the non-
determinism would mean that the 3-surfaces Y 3 at light cone boundary correspond to at most
enumerable number of absolute minima X4(Y 3) of Kähler action so that one would get at most
enumerably infinite number of replicas of a given configuration space region and the construction
would still reduce to the light cone boundary.

1. This is probably quite too simplistic view. Any 4-surface which has CP2 projection which
belongs to so called Lagrange manifold of CP2 having by definition vanishing induced Kähler
form is vacuum extremal. Thus there is an infinite variety of 6-dimensional sub-manifolds of
H for which all extremals of Kähler action are vacua.

2. CP2 type extremals are different vacuum extremals since they possess non-vanishing Kähler
form and Kähler action. They are identifiable as classical counterparts of elementary particles
have M4

+ projection which is a random light like curve (this in fact gives rise to conformal in-
variance identifiable as counterpart of quaternion conformal invariance). Thus there are good
reasons to suspect that classical non-determinism might destroy the dream about complete
reduction to the light cone boundary.

3. The wormhole contacts connecting different space-time sheets together can be seen as pieces
of CP2 type extremals and one expects that the non-determinism is still there and that the
metrically 2-dimensional elementary particle horizons (light like 3-surfaces of H surrounding
wormhole contacts and having time-like M4

+ projection) might be a crucial element in the
understanding of quantum TGD. The non-determinism of CP2 type extremals is absolutely
crucial for the ordinary elementary particle physics. It seems that the conformal symmetries
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responsible for the ordinary elementary particle quantum numbers acting in these degrees of
freedom do not contribute to the configuration space metric line element.

4. The possibility of space-time sheets with a negative time orientation with ensuing negative
sign of classical energy is a further blow against δM4

+ reductionism. Space-time sheets can
be created as pairs of positive and negative energy space-time sheet from vacuum and this
forces to modify radically the ontology of physics. Crossing symmetry allows to interpret
particle reactions as a creation of zero energy states from vacuum, and the identification of
the gravitational energy as the difference between positive and negative energies of matter
supports the view that the net inertial (conserved Poincare-) energy of the universe van-
ishes both in quantal and classical sense. This option resolves unpleasant questions about
net conserved quantum numbers of Universe, and provides an elegant interpretation of the
vacuum extremals as correlates for systems with vanishing Poincare energy. This option
is the only possible alternative from the point of view of TGD inspired cosmology where
Robertson-Walker metrics are vacuum extremals with respect to inertial energy. In particu-
lar, super-canonical invariance transforms to a fundamental symmetry of elementary particle
physics besides the conformal symmetry associated with 3-D light like causal determinants
which means a dramatic departure from string models unless it is somehow equivalent with
the super-canonical symmetry.

2.2.2 3-D light like causal determinants

Quite generally, elementary particle horizons and light-like boundaries of 4-surfaces are light-like
3-surfaces. At least elementary particle horizons seem to serve as causal determinants (CDs) by
the non-determinism of Kähler action. Also the 3-surfaces separating two maximal deterministic
regions of a given space-time sheet are expected to be light like. In the original δM4

+ reductionistic
scenario this forces to ask whether one must include these light-like 3-surfaces to the configuration
space besides the 3-surfaces at light like boundary δM4

+×CP2 and whether these degrees of freedom
correspond to zero modes or contribute also to the configuration space metric.

Light like 3-D CDs would provide an elegant and unique manner to fix the gauge for general
coordinate invariance. This would mean taking the light like 3-surfaces X3

l as kind of reference
points in the configuration space and consider their canonical deformations localized with respect
to the coordinates of X3

l as representations of 3-surfaces X3 for which X4(X3) has deformed light
like boundary or elementary particle horizon.

A formal generalization of the construction of configuration space metric and spinor structure
at 7-D causal determinants so that it would apply at 3-D light like causal determinants is not
expected to make sense. A second objection against this idea is that these light like surfaces can
carry only classical conserved currents parallel to them and one cannot thus pose the initial values
of induced spinor fields freely at them as one can in case of 3-surfaces at δH.

The most plausible solution of this problem is that 3-D light like CDs determine Kähler function
indirectly in terms of the fermionic determinants associated with the modified Dirac action. From
Kähler function it is in principle (not in practice) possible to deduce the Kähler metric and even
configuration space spinor structure. 7-D causal determinants would in turn naturally determine
the Kähler metric and gamma matrices but the construction of Kähler function would be difficult.

2.2.3 Lightlike 3-surfaces as vacuum solutions of 3-D vacuum Einstein equations and
Witten’s approach to quantum gravitation

There is an interesting relationship to the recent yet unpublished work of Witten related to 3-D
quantum blackholes [43] which allows to get additional perspective.
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1. The motivation of Witten is to find an exact quantum theory for blackholes in 3-D case. Wit-
ten proposes that the quantum theory for 3-D AdS3 blackhole with a negative cosmological
constant can be reduced by AdS3/CFT2 correspondence to a 2-D conformal field theory at
the 2-D boundary of AdS3 analogous to blackhole horizon. This conformal field theory would
be a Chern-Simons theory associated with the isometry group SO(1, 2)× SO(1, 2) of AdS3.
Witten restricts the consideration to Λ < 0 solutions because Λ = 0 does not allow black-hole
solutions and Witten believes that Λ > 0 solutions are non-perturbatively unstable.

2. This conformal theory would have the so called monster group [44, 43] as the group of its
discrete hidden symmetries. The primary fields of the corresponding conformal field theory
would form representations of this group. The existence of this kind of conformal theory
has been demonstrated already [45]. In particular, it has been shown that this theory does
not allow massless states. On the other hand, for the 3-D vacuum Einstein equations the
vanishing of the Einstein tensor requires the vanishing of curvature tensor, which means that
gravitational radiation is not possible. HenceAdS3 theory in Witten’s sense might define this
conformal field theory.

Witten’s construction has obviously a strong structural similarity to TGD.

1. Chern-Simons action for the induced Kähler form - or equivalently, for the induced classical
color gauge field proportional to Kähler form and having Abelian holonomy - corresponds to
the Chern-Simons action in Witten’s theory.

2. Light-like 3-surfaces can be regard as 3-D solutions of vacuum Einstein equations. Due to
the effective 2-dimensionality of the induced metric Einstein tensor vanishes identically and
vacuum Einstein equations are satisfied for Λ = 0. One can say that light-like partonic
3-surfaces correspond to empty space solutions of Einstein equations. Even more, partonic
3-surfaces are very much analogous to 3-D black-holes if one identifies the counterpart of
black-hole horizon with the intersection of δM4

± × CP2 with the partonic 2-surface.

3. For light-like 3-surfaces curvature tensor is non-vanishing which raises the question whether
one obtains gravitons in this case. The fact that time direction does not contribute to the
metric means that propagating waves are not possible so that no 3-D gravitational radiation
is obtained. There is analog for this result at quantum level. If partonic fermions are assumed
to be free fields as is done in the recent formulation of quantum TGD [C3], gravitons can be
obtained only as parton-antiparton bound states connected by flux tubes and are therefore
genuinely stringy objects. Hence it is not possible to speak about 3-D gravitons as single
parton states.

4. Vacuum Einstein equations can be regarded as gauge fixing allowing to eliminate partially
the gauge degeneracy due to the general coordinate invariance. Additional super conformal
symmetries are however present and have an identification in terms of additional symmetries
related to the fact that space-time surfaces correspond to preferred extremals of Kähler action
whose existence was concluded before the discovery of the formulation in terms of light-like
3-surfaces.

There are also interesting differences.

1. According to Witten, his theory has no obvious generalization to 4-D black-holes whereas
3-D light-like determinants define the generalization of blackhole horizons which are also
light-like 3-surfaces in the induced metric. In particular, light-like 3-surfaces define a 4-D
quantum holography.
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2. Also the fermionic counterpart of Chern-Simons action for the induced spinors whose form is
dictated by the super-conformal symmetry is present. Furthermore, partonic 3-surfaces are
dynamical unlike AdS3 and the analog of Witten’s theory results by freezing the vibrational
degrees of freedom in TGD framework.

3. The very notion of light-likeness involves the induced metric implying that the theory is
almost-topological but not quite. This small but important distinction indeed guarantees
that the theory is physically interesting.

4. In Witten’s theory the gauge group corresponds to the isometry group SO(1, 2) × SO(1, 2)
of AdS3. The group of isometries of light-like 3-surface is something much much mightier.
It corresponds to the conformal transformations of 2-dimensional section of the 3-surfaces
made local with respect to the radial light-like coordinate in such a manner that radial scaling
compensates the conformal scaling of the metric produced by the conformal transformation.

The direct TGD counterpart of the Witten’s gauge group would be thus infinite-dimensional
and essentially same as the group of 2-D conformal transformations. Presumably this can
be interpreted in terms of the extension of conformal invariance implied by the presence
of ordinary conformal symmetries associated with 2-D cross section plus ”conformal” sym-
metries with respect to the radial light-like coordinate. This raises the question about the
possibility to formulate quantum TGD as something analogous to string field theory using
using Chern-Simons action for this infinite-dimensional group.

5. Monster group does not have any special role in TGD framework. However, all finite groups
and - as it seems - also compact groups can appear as groups of dynamical symmetries
at the partonic level in the general framework provided by the inclusions of hyper-finite
factors of type II1 [C9, C2, C3]. Compact groups and their quantum counterparts would
closely relate to a hierarchy of Jones inclusions associated with the TGD based quantum
measurement theory with finite measurement resolution defined by inclusion as well as to
the generalization of the imbedding space related to the hierarchy of Planck constants [C9].
Discrete groups would correspond to the number theoretical braids providing representations
of Galois groups for extensions of rationals realized as braidings [C3, E11].

6. To make it clear, I am not suggesting that AdS3/CFT2 correspondence should have a TGD
counterpart. If it had, a reduction of TGD to a closed string theory would take place.
The almost-topological QFT character of TGD excludes this on general grounds. More con-
cretely, the dynamics would be effectively 2-dimensional if the radial superconformal algebras
associated with the light-like coordinate would act as pure gauge symmetries. Concrete man-
ifestations of the genuine 3-D character are following.

i) Generalized super-conformal representations decompose into infinite direct sums of stringy
super-conformal representations.

ii) In p-adic thermodynamics explaining successfully particle massivation radial conformal
symmetries act as dynamical symmetries crucial for the particle massivation interpreted as
a generation of a thermal conformal weight.

iii) The maxima of Kähler function defining Kähler geometry in the world of classical worlds
correspond to special light-like 3-surfaces analogous to bottoms of valleys in spin glass energy
landscape meaning that there is infinite number of different 3-D lightlike surfaces associated
with given 2-D partonic configuration each giving rise to different background affecting the
dynamics in quantum fluctuating degrees of freedom [C3]. This is the analogy of landscape
in TGD framework but with a direct physical interpretation in say living matter.
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As noticed, Witten’s theory is essentially for 2-D fundamental objects. It is good to sum up
what is needed to get a theory for 3-D fundamental objects in TGD framework from an approach
similar to Witten’s in many respects. This connection is obtained if one brings in 4-D holography,
replaces 3-metrics with light-like 3-surfaces (light-likeness constraint is possible by 4-D general
coordinate invariance), and accepts the new view about S-matrix implied by the zero energy
ontology [C2, C3].

1. Light-like 3-surfaces can be regarded as solutions vacuum Einstein equations with vanishing
cosmological constant (Witten considers solutions with non-vanishing cosmological constant).
The effective 2-D character of the induced metric is what makes this possible.

2. Zero energy ontology is also an essential element: quantum states of 3-D theory in zero energy
ontology correspond to generalized S-matrices [C2]: Matrix or M-matrix might be a proper
term. Matrix is a ”complex square root” of density matrix -matrix valued generalization of
Schrodinger amplitude - defining time like entanglement coefficients. Its ”phase” is unitary
matrix and might be rather universal. Matrix is a functor from the category of Feyman
cobordisms and matrices have groupoid like structure [C2, C3]. Without this generalization
theory would reduce to a theory for 2-D fundamental objects.

3. Theory becomes genuinely 4-D because S-matrix is not universal anymore but characterizes
zero energy states.

4. 4-D holography is obtained via the Kähler metric of the world of classical worlds assigning
to light-like 3-surface a preferred extremal of Kähler action as the analog of Bohr orbit con-
taining 3-D lightlike surfaces as submanifolds (analogs of blackhole horizons and lightlike
boundaries). Interiors of 4-D space-time sheets corresponds to zero modes of the metric
and to the classical variables of quantum measurement theory (quantum classical correspon-
dence). The conjecture is that Dirac determinant for the modified Dirac action associated
with partonic 3-surfaces defines the vacuum functional as the exponent of Kähler function
with Kähler coupling strength fixed completely as the analog of critical temperature so that
everything reduces to almost topological QFT [B4].

5. The counterpart of the ordinary unitary S-matrix in mathematical sense is between zero
energy states. I call it U-matrix [C2]. It has nothing to do with particle reactions. It
is crucial for understanding consciousness via moment of consciousness as quantum jump
identification.

2.3 Could classical non-determinism be described in terms of 7-D causal
determinants X3

l × CP2?

The non-determinism of Kähler action implies the presence of 3-D (most naturally) light like causal
determinants X3

l ⊂ X4. It is difficult to imagine how to deduce the possible direct contribution of
these degrees of freedom to the configuration space metric. A possible solution of the problems is
based on the notion of duality.

Perhaps the allowance of sufficiently general family of surfaces X3
l × CP2 as 7-D CDs instead

of using only δM4
+ × CP2 could be equivalent with using 3-dimensional light like CDs X3

l ⊂ X4.
Duality would mean that one could construct X4 either by giving space-like 3-surfaces X3 at 7-D
causal determinants or by giving light like 3-D causal determinants X3

l ⊂ X4. The duality should
apply to the entire quantum TGD.

In its strongest form duality requires that stringy mass formula is realized both in super-
canonical and Super Kac-Moody sense and thus also Poincare invariance. Hence the replacement
H+ → H = M4 × CP2 would be necessary. The configuration space would become the union of
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the configuration spaces associated with X3
l × CP2 ⊂ M4 × CP2. Most naturally the light like

X3
l ⊂M4 would correspond to unions of future and past light cones of the entire Minkowski space

M4. Duality would have dramatic consequences: in particular, the super-canonical and super-
conformal symmetries of light cone boundary δM4

+×CP2 would be transmuted from cosmological
to microscopic symmetries.

The new view about the relationship of inertial and gravitational energy encourages strongly
this option and leads to what might called zero (inertial) energy cosmology. A given space-time
sheet can have both positive and negative time orientation, and therefore also positive and negative
classical charges. Hence one can consider pair creation in which a pair of 3-surfaces with themselves
are not light-like and have opposite classical charges emerges at the light like 7-surfaces X3

l ×CP2.
The process can be also interpreted as a time reflection of a negative energy space-time sheet as a
positive energy space-time sheet.

The net Poincare quantum numbers associated with X3 ⊂ δM4
+ × CP2 vanish since the posi-

tive and negative energy branches of space-time surface must have opposite quantum numbers in
general. The stringy mass formula should thus apply separately to both branches. The alternative
possibility is to give up the stringy mass formula altogether and consider a more general form
duality relating representations of theory relying on different quantum number spectrum. Indeed,
super-canonical and Super Kac-Moody conformal weights have quite different spectra. In this
case the mass squared in the stringy mass formula would be replaced with the Casimir operator
of the Lorentz group. For this option 7–3 duality would relate descriptions based on different
quantum number spectra. The states inside super-canonical representations would decompose into
gigantic multiplets of almost degenerate states (ideal for representing biologically relevant infor-
mation). These representations could be seen as unitary representations of Lorentz group carrying
no four-momentum but only Lorentz and color quantum numbers.

The simplicity of the construction of the configuration space geometry at 7-D CDs allows to
understand the general aspects of super-canonical conformal symmetries in a more general situation
if the generalization involves only unions of future and past light cone boundaries. In particular,
the zeros of Riemann Zeta determine the spectrum of conformal weights labelling configuration
space tangent vectors and physical states so that Riemann hypothesis would have a direct physical
content.

Even in the case that δM4
± × CP2 are replaced with more general light like 7-surfaces X3

l ×
CP2, it might be possible to construct super-canonical representations. Denote by r the light-like
coordinate and by X2 the r = constant section which in turn has coordinates (z, z̄). One can fix the
local complex coordinates of X2 in such a manner that the induced metric has the standard form
F (z, z)dzdz̄: the choice of the local coordinates is unique apart from conformal transformations of
X2. In the case of the light cone boundary one has F = 1

(1+ρ2)2 . The representations could have
the same general analytic form as the two types of representations of the Lorentz group at δM4

+

corresponding to SO(3) and SO(2) subgroups of SO(3, 1), which were discussed in [B2]. From
the general form of the representations one can deduce the general form of the generators taking
the role of the generators of Lorentz group, whose algebra is indeed contained as a sub-algebra to
conformal algebra and the construction of canonical charges and super-charges would generalize
as such to the general context.

7–3 duality, or equivalently quantum classical correspondence, would be realized via the map-
ping of super-canonical conformal weights to the points of the light like CDs X3

l ⊂ X4 much like
quantal momenta have direction vectors in 3-space as their classical correlates [C5]. Super confor-
mal gauge transformations of X3

l ⊂ X4 would induce braiding operations in the space of complex
super-canonical conformal weights inducing a spectral flow equivalent with a gauge change. Also
Super Kac-Moody algebra would have a natural commutator action on super-canonical algebra.
Hence super-canonical algebra would define something highly analogous to the primary fields of
a conformal field theory defined in a complex plane containing super-canonical conformal weights
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as punctures along the lines defined by negative real axis and the line Re(z) = 1/2 containing the
non-trivial zeros and their superpositions plus lines Re(z) = −n+ 1/2 parallel to this line.

2.4 Could all light like 7-surfaces X3
l × CP2 act as causal determinants?

The following arguments show that light like 7-surfaces X3
l × CP2, where X3

l is any light like
3-surface of M4, cannot be excluded as 7-D causal determinants and that they might be even
necessary.

1. p-Adic mass calculations necessitated to include Kac Moody algebra of Lorentz group. The
Kac Moody algebra associated with Y 3

l ⊂ X4 acts on X2 ⊂ X3
l × CP2. For X3

l = M4
± local

Lorentz transformations respecting the dip of the light cone would in general map the points
of X2 inside 7-D CD . Thus it is not necessary to assume X3

l ×CP2 to be more general than
M4
± or union of them.

2. Conservation laws suggest that the 3-surfaces in question should approach vacuum extremals
at the boundary of the light like surface. This however would mean that the magnetic flux
Hamiltonians and super charges vanish. A given space-time sheets can however have both
positive and negative time orientation, and therefore also positive and negative classical
charges. Hence one can consider pair creation in which pair of 3-surfaces with opposite
classical charges emerges from the boundary of a light like surface.

3. The classical non-determinism of Kähler action implies that the same 3-surface in general
corresponds to several space-time surfaces X4(X3) with the same value of absolute minimum
of Kähler action and same values of classical conserved charges. Hence the creation of pairs
of this kind of positive and negative energy space-time sheets at the boundary of the light
like surfaces of M4

+ or even H is possible. The inclusion of all possible pairs of 3-surfaces with
vanishing net conserved charges would force to extend configuration space with additional
vacuum sectors. It must be emphasized that these negative energy space-time sheets and
their pair creation have become a corner stone of TGD inspired theory of consciousness and
of the model of quantum biology.

These arguments would suggest that configuration space geometry and spinor structure involves
the cosmological super-canonical algebra at δM4

+×CP2 and completely analogous algebras at the
light like 7-surfaces X3

l × CP2 of H or even more general light-like 7-surfaces X7
l describing zero

energy sectors of the configuration space.
The simplicity of the construction of the configuration space geometry at light cone boundary

allows to understand the general aspects of super-canonical conformal symmetries in the more
general situation. The representations of super-conformal algebra are expected to have a form
very much similar to that encountered in the case of the light cone boundary, and certainly so for
the light cone boundaries inside light cone.

Denote by r the light-like coordinate and by X2
i the intersection of light like 3-D CD with

X3
l,i ⊂ X4 with X3

l ×CP2. Assume that X2
i has coordinates (z, z̄). One can fix the local complex

coordinates of X2 in such a manner that the induced metric has the standard form F (z, z)dzdz̄:
the choice of the local coordinates is unique apart from conformal transformations of X2

i . In the
case of the light cone boundary one has F = 1

(1+ρ2)2 .
In the case of the light cone boundary the super-canonical algebra decomposes to two parts

g = gnt + gt corresponding to non-trivial and trivial zeros of Riemann Zeta. gnt and gt have
both their own Cartan decompositions and they generate together a larger algebra having Cartan
decomposition.
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1. The algebra gnt corresponding to non-trivial zeros correspond to the function basis associated
with SO(3) subroup of SO(3, 1):

fm,l,k = Ylm(θ, φ)× (rM/r0)k1+iρ .

For k1 = −1/2 the representation is unitary for any value of ρ for the natural inner product
reducing to the inner product of plane waves in rM degrees of freedom. The unitarity with
respect to Lorentz group is not however absolutely essential just as it is not essential in the
case of Poincare group. The hypothesis is that for the generating elements of the super-
canonical algebra gnt the conformal weight h = −k1 − iρ corresponds to non-trivial zeros of
Zeta. If the factor (rM/r0)−1/2 accompanies Poisson bracket gnt closes under Poisson brackets
to an algebra for which the imaginary parts of conformal weights are linear combinations of
the imaginary parts of zeros of Zeta.

2. The function basis consisting of eigen states of rotation and boost generator is given by
f(m,n, k) = e±i(k−1)φρk−1(1 + ρ2)−2k(r/r0)k, k > 0, defines an orthogonal function basis
orthogonal also with the basis of a). The Poisson bracket between generators of gt and
between the generators of gt and gnt involves the factor (rM/r0)−1. The integers k = 2m
correspond to trivial zeros of Zeta and define tt whereas odd values of k correspond to ht in
the Cartan decomposition gt = tt + ht.

3. The general conclusion is that the subspace t for the algebra generated b gnt and gt contains
elements with conformal weights n− 1/2− i

∑
i niyi such that

∑
i ni = N is odd (even) for

n even and even (odd) for n odd for elements of t (h). Also the elements of tt belong to t.
Orthogonality with respect to the inner product of δM4

+ is achieved if one assumes Virasoro
conditions which means that the values of n = 0, 1 actually contribute.

2.5 The category of light cones, the construction of the configuration
space geometry, and the problem of psychological time

Light-like 7-surfaces of imbedding space are central in the construction of the geometry of the world
of classical worlds. The original hypothesis was that space-times are 4-surfaces of H+ = M4

+×CP2,
where M4

+ is the future light cone of Minkowski space with the moment of big bang identified as
its boundary δH+ = δM4

+ × CP2: ”the boundary of light-cone”. The naive quantum holography
would suggest that by classical determinism everything reduces to the light cone boundary. The
classical non-determinism of Kähler action forces to give up this naive picture which also spoils
the full Poincare invariance.

The new view about energy and time forces to conclude that space-time surfaces approach vacua
at the boundary of the future light cone. The world of classical worlds, call it CH, would consist
of classical universes having a vanishing inertial 4-momentum and other conserved quantities and
being created from vacuum: big bang would be replaced with a ”silent whisper amplified to a big
bang”. The net gravitational mass density can be non-vanishing since gravitational momentum
is difference of inertial momenta of positive and negative energy matter: Einstein’s Equivalence
Principle is exact truth only at the limit when the interaction between positive and negative
energy matter can be neglected [D5]. This option would maximize the symmetries and cure the
philosophical head aches caused by question ”What are the net quark and lepton numbers of the
Universe”. M4 and M4

+ options might be indistinguishable at the practical level of observations
and M4 would be preferred because of its simplicity and exact Poincare invariance.

Poincare invariant theory results if one replaces CH with the union of its copies CH(a) as-
sociated with the light cones M4

+(a) with a specifying the position of the dip of M4
+(a) in M4.

Also past directed light-cones M4
−(a) are allowed. The unions of the light cones with inclusion as a
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basic arrow would form category analogous to the category Set with inclusion defining the arrow of
time. This category formalizes the ideas that cosmology has a fractal Russian doll like structure,
that the cosmologies inside cosmologies are singularity free, and that cosmology is analogous to an
organic evolution and organic evolution to a mini cosmology [D5].

The view also unifies the proposed two explanations for the arrow of psychological time [K1]

1. The mind like space-time sheets representing conscious self drift quantum jump by quantum
jump towards geometric future whereas the matter like space-time sheets remain stationary.
The self of the organism presumably consisting mostly of topological field quanta, would be
like a passenger in a moving train seeing the changing landscape. The organism would be
a mini cosmology drifting quantum jump to the geometric future. Also selves living in the
reverse direction of time are possible.

2. Psychological time corresponds to a phase transition front in which intentions represented by
p-adic space-time sheets transform to actions represented by real space-time sheets moving
to the direction of geometric future. The motion would be due to the drift of M4

+(a). The
very fact that the mini cosmology is created from vacuum, implies that space-time sheets of
both negative and positive field energy are abundantly generated as realizations of intentions.
The intentional resources are richest near the boundary of M4

+(a) and depleted during the
ageing with respect to subjective time as asymptotic self-organization patterns are reached.
Interestingly, mini cosmology can be seen as a fractally scaled up variant of quantum jump.
The realization of intentions as negative energy signals (phase conjugate light) sent to the
geometric past and inducing a positive energy response (say neural activity) is consistent
with the TGD based models for motor action and long term memory [K1].

2.6 Duality of 3-D and 7-D causal determinants as particle-field duality

TGD predicts two kinds of super-conformal symmetries corresponding to 7-D and 3-D causal
determinants and that their duality would generalize the age-old field-particle particle duality so
that quantum gravitational holography and YM-gravitational duality could be seen as particular
aspects of field particle duality. Without exaggerating, 7–3 duality means breakthrough not only
in the understanding of the implications of the non-determinism of Kähler action but also in the
construction of quantum TGD.

2.6.1 7–3 duality requires efective 2-dimensionality

The super-canonical algebra associated with 7-D CDs and Super Kac-Moody algebra associated
with 3-D CDs are dual if they correspond to two preferred basis for the tangent space of CH and
thus two preferred choices of CH coordinates.

The assumption that that all relevant data about configuration space geometry is contained by
the intersections X2

i of the 3-D CDs X3
l with 7-D CDs defining 2-sub-manifolds of X3 concretizes

the idea about duality. Duality would thus imply effective 2-dimensionality of 3-surfaces and the
task is to understand what this could mean.

1. By duality both X2
i -local H-isometries and the Hamiltonians of δM4

+×CP2 restricted to X2
i

would span the tangent space of CH. A highly non-trivial implication would be a dramatic
simplification of the construction of the configuration space Hamiltonians, Kähler metric, and
gamma matrices since one could just sum only over the flux integrals over the sub-manifolds
X2
i . The best that one might hope is that it is possible to fix both 3-D light like CDs and

their sub-manifolds X2
i and 7-D CDs freely.
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2. The reduction to dimension 2 could be understood in terms of the impossibility to choose
X3 freely once light like 3-D CDs are fixed but this does not remove the air of paradox. The
resolution of the paradox comes from the following observation. The light likeness condition
for 3-D CD can be written in the coordinates for which the induced metric is diagonal as a
vanishing of one of the diagonal components of the induced metric, say g11:

g1ihkl∂1h
k∂ih

l = 0 , i = 1, 2, 3 . (1)

The condition g11 = 0 is exactly like the light likeness condition for the otherwise random
M4 projection of CP2 type extremals [D1]. When written in terms of the Fourier expansion
this conditions gives nothing but classical Virasoro conditions. This analog of the conformal
invariance is different from the conformal invariance associated with transversal degrees of
freedom and and from quaternion conformal invariance and its commutative version. This
symmetry conforms nicely with the duality idea since also the boundary of the light cone
allows conformal invariance in both light like direction and transversal degrees of freedom.
Ironically, the presence of this degeneracy should have been obvious from the beginning since
only the end points of CP2 type extremal should matter. Since wormhole contacts can be
modelled as pieces of CP2 type extremals, also they are expected to possess this degeneracy.

One can consider two interpretations of this symmetry.

i) The degrees of freedom generating different light like 3-D CDs X3
l with a given intersection

X2 with 7-D CD correspond to zero modes. Physically this would mean that in each quantum
jump a complete localization occurs in these degrees of freedom so that particles behave
effectively classically. With this interpretation these degrees of freedom could perhaps be
seen as dual for the zero mode degrees of freedom associated with the space-like 3-surfaces
X3 at 7-D CDs: deformation of X3

l would induce deformation of X3.

ii) Gauge degrees of freedom could be in question so that one can make a gauge choice fixing
the orbits within certain limits.

At the level of configuration space geometry the result would mean that one can indeed
code all data using only two-dimensional surfaces X2

i of X3. This brings in mind a number
theoretic realization for the quantum measurement theory. That only mutually commuting
observables can be measured simultaneously would correspond to the assumption that all data
about configuration space geometry and quantum physics must be given at 2-dimensional
surfaces of H for which the tangent space at each point corresponds to an Abelian sub-algebra
of octonions. Quantum TGD would reduce to something having very high resemblance with
WZW model. One cannot deny the resemblance with M-theories with M interpreted as a
membrane.

2.6.2 7-3 duality and quantum measurement theory

The action of Super Kac-Moody generators on configuration space Hamiltonians is well defined
and one might hope that as a functional of 2-surface it could give rise to a unique superposition of
super-canonical Hamiltonians. Same should apply to the action of super-canonical algebra on Kac
Moody algebra. At the level of gamma matrices the question is whether the configuration space
metric can be defined equivalently in terms of anti-commutators of super-canonical and Super
Kac-Moody generators. If the answer is affirmative, then 7–3 duality would be nothing but a
transformation between two preferred coordinates of the configuration space.

TGD inspired quantum measurement theory suggests however that the two super-conformal
algebras correspond to each other like classical and quantal degrees of freedom. Super Kac-Moody
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algebra and super conformal algebra would act as transformations preserving the conformal equiva-
lence class of the partonic 2-surfaces X2 associated with the maxima of the Kähler function whereas
super-canonical algebra in general changes conformal moduli and induces a conformal anomaly in
this manner. Hence Kac-Moody algebra seems to act in the zero modes of the configuration space
metric. In TGD inspired quantum measurement zero modes correspond to classical non-quantum
fluctuating dynamical variables in 1-1 correspondence with quantum fluctuating degrees of freedom
like the positions of the pointer of the measurement apparatus with the directions of spin of elec-
tron. Hence Kac-Moody algebra would define configuration space coordinates in terms of the map
induced by correlation between classical and quantal degrees of freedom induced by entanglement.

Duality would be also realized in a well-defined sense at the level of configuration space confor-
mal symmetries. The idea inspired by Olive-Goddard-Kent coset construction is that the generators
of Super Virasoro algebra corresponds to the differences of those associated with Super Kac-Moody
and super-canonical algebras. The justification comes from the miraculous geometry of the light
cone boundary implying that Super Kac-Moody conformal symmetries of X2 can be compensated
by super-canonical local radial scalings so that the differences of corresponding Super Virasoro
generators annihilate physical states. If the central extension parameters are same, the resulting
central extension is trivial. What is done is to construct first a state with a non-positive confor-
mal weight using super-canonical generators, and then to apply Super-Kac Moody generators to
compensate this conformal weight to get a state with vanishing conformal weight and thus mass.

2.6.3 7–3 duality and the equivalence of loop diagrams with tree diagrams

The 3-D light like CDs are expected to define analogs of Feynman diagrams. In the simplest
case there would be past of future and past directed 7-D CDs X7

± = δM4
± × CP2, and the lines

of the generalized Feynman diagram would begin from X7
+ and terminate to X7

−. In [C5] the
generalization of duality symmetry of string models stating that generalized Feynman diagrams
with loops are equivalent with tree diagrams is discussed. By quantum-classical correspondence this
would mean that the conformal equivalence for Feynman diagrams defined by 3-D light like CDs
generalizes to a topological equivalence. This is indeed as it should be since it is the intersections
X2
i with X7

± which should code for physics and these intersections do not contain information
about loops.

Interesting questions relate to the interpretation of the negative energy branches of the space-
time surface. It would seem that also the surfaces X2

i are accompanied by negative energy branch.
The branching brings in mind a space-time correlate for bra-ket dichotomy. The two branches
would represent Feynman diagrams which are equivalent but correspond to different sign of Kähler
coupling strength if the generalization of electric-magnetic duality is accepted.

3 The association of the modified Dirac action to Chern-
Simons action and explicit realization of super-conformal
symmetries

Super Kac-Moody symmetries should correspond to solutions of modified Dirac equation which
are in some sense holomorphic. The discussion below is based on the same general ideas but differs
radically from the previous picture at the level of details. The additional assumption inspired
by the considerations of this section is that the action associated with the partonic 3-surfaces is
non-singular and therefore Chern-Simons action for the induced Kähler gauge potential.

This means that TGD is at the fundamental level almost-topological QFT: only the light-
likeness of the partonic 3-surfaces brings in the induced metric and gravitational and gauge inter-
actions and induces the breaking of scale and super-conformal invariance. The resulting theory
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possesses the expected super Kac-Moody and super-canonical symmetries albeit in a more general
form than suggested by the considerations of this section. A connection of the spectrum of the
modified Dirac operator with the zeros or Riemann Zeta is suggestive and provides support for
the earlier number theoretic speculations concerning the spectrum of super-canonical conformal
weights. One can safely say, that if this formulation is correct, TGD could not differ less from a
physically trivial theory.

3.1 Zero modes and generalized eigen modes of the modified Dirac ac-
tion

1. The modified gamma matrices appearing in the modified Dirac equation are expressible in
terms of the Lagrangian density L assignable to the light-like partonic 3-surface X43l as

Γ̂α =
∂L

∂αhk
Γk , (2)

where Γk denotes gamma matrices of imbedding space. The modified Dirac operator is
defined as

D = Γ̂αDα , (3)

where Dα is the covariant derivative defined by the induced spinor connection. Modified
gamma matrices satisfy the condition

DαΓ̂α = 0 (4)

if the field equations associated with L are satisfied. This guarantees that one indeed obtains
the analog of the massless Dirac equation. Zero modes of the modified Dirac equation should
define the conformal super-symmetries.

2. The generalized eigenvalues and eigen solutions of the modified Dirac operator are defined
as

DΨ = λNΨ ,

N = nkΓk .

(5)

Here nk denotes a light-like vector which must satisfy the integrability condition

[
D,nkΓk

]
= 0 . (6)

if the analog D2Ψ = 0 for the square of massless Dirac equation is to hold true. nk should be
determined by the field equations associated with L somehow and commutativity condition
could fix n more or less uniquely.

If the commutativity condition holds true then any generalized eigen mode Ψλ gives rise to
a zero mode as Ψ = NΨλ. One can add to a given non-zero mode any superposition of zero
modes without affecting the generalized eigen mode property.
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3. The hypothesis is that Kähler function is expressible in terms of the Dirac determinant of
the modified Dirac operator defined as the product of the generalized eigenvalues. The Dirac
determinant must carry information about the interior of the space-time surface determined
as preferred extremal of Kähler action or (as the hypothesis goes) as hyper-quaternionic or co-
hyper-quaternionic 4-surface of M8 defining unique 4-surface of M4×CP2. The assumption
that X3

L is light-like brings in an implicit dependence on the induced metric. The simplest
assumption is that nk is a light-like vector field tangential to X3

l so that the knowledge of
X3
l fixes completely the dynamics.

4. If the action associated with the partonic light-like 3-surfaces contains induced metric, the
field equations become singular and ill-defined unless one defines the field equations at X3

l via
a limiting procedure and poses additional conditions on the behavior of Ψ at X3

l . Situation
changes if the action does not contain the induced metric. The classical field equations are
indeed well-defined at light-like partonic 3-surfaces for Chern-Simons action for the induced
Kähler gauge potential

L = LC−S = kεαβγJαβAγ . (7)

One obtains the analog of WZW model with gauge field replaced with the induced Kähler
form. This action does not depend on the induced metric explicitly so that in this sense a
topological field theory results. There is no dependence on M4 gamma matrices so that local
Lorentz transformations act as super-conformal symmetries of both classical field equations
and modified Dirac equation and SL(2, C) defines the analog of the SU(2) Kac-Moody
algebra for N = 4 SCA.

The facts that the induced metric is light-like for X3
l , that the modified Dirac equation con-

tains information about this and therefore about induced metric, and that Dirac determinant
is the product of the non-vanishing eigen values of the modified Dirac operator, imply the
failure of topological field theory property at the level of Kähler function identified as the
logarithm of the Dirac determinant.

A more complicated option would be that the modified Dirac action contains also interior
term corresponding to the Kähler action. This alternative would break super-conformal
symmetries explicitly and almost-topological QFT property would be lost. This option is not
consistent with the idea that quantum-classical correspondence relates the partonic dynamics
at X3

l with the classical dynamics in the interior of space-time providing first principle
justification for the basic assumptions of the quantum measurement theory.

The classical field equations defined by LC−S read as

Dµ
∂LC−S
∂µhk

= 0 ,

∂LC−S
∂µhk

= εµαβ
[
2Jkl∂αhlAβ + JαβAk)

]
. (8)

From the explicit form of equations it is obvious that the most general solution corresponds
to a X3

l with at most 2-dimensional CP2 projection.

Although C-S action vanishes, the color isometry currents are in general non-vanishing. One
can assign currents also to super-Kac Moody and super-canonical transformations using
standard formulas and the possibility that the corresponding charges define configuration
space Hamiltonians and their super-counterparts must be considered seriously.
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Suppose that the CP2 projection is 2-dimensional and not a Lagrange manifold. One can
introduce coordinates for which the coordinates for X2 are same as those for CP2 projection.
For instance, complex coordinates (z, z) of a geodesic sphere could be used as local coordinates
for X2. One can also assign one M4 coordinate, call it r, with M4 projection X1 of X3

l .
Locally this coordinate can be taken to be one of the standardM4 coordinates. The remaining
fiveH-coordinates can be expressed in terms of (r, z, z) and light-likeness condition boils down
to the vanishing of the metric determinant:

det(g3) = 0 . (9)

All diffeomorphisms of H respecting the light-likeness condition are symmetries of the solu-
tion ansatz.

Consider some special cases serve as examples.

1. The simplest situation results when X4
l is of form X1 ×X2, where X1 is light-like random

curve in M4 as for CP2 type vacuum extremals. In this case light-likeness boils down to
Virasoro conditions with real parameter r playing the role analogous to that of a complex
coordinate: this conformal symmetry is dynamical and must be distinguished from conformal
symmetries assignable to X2. A plausible guess is that light-likeness condition quite generally
reduces to the classical Virasoro conditions.

2. A solution in which CP2 projection is dynamical is obtained by assuming that for a given
value of M4 time coordinate CP2- and M4- projections are one-dimensional curves. For
instance, CP2 projection could be the circle Θ = Θ(m0 ≡ t) whereas M4 projection could
be the circle ρ =

√
x2 + y2 = ρ(m0). Light-likeness condition reduces to the condition

gtt = 1−R2∂tΘ2 − ∂tρ2 = 0.

3.2 Classical field equations for the modified Dirac equation defined by
Chern-Simons action

The modified Dirac operator is given by

D =
∂LC−S
∂µhk

ΓkDµ

= εµαβ
[
2Jkl∂αhlAβ + JαβAk

]
ΓkDµ ,

ε̂αβγ = εαβγ
√
g3 . (10)

Note ε̂αβγ = does not depend on the induced metric. The operator is non-trivial only for 3-
surfaces for which CP2 projection is 2-dimensional non-Lagrangian sub-manifold. The modified
Dirac operator reduces to a one-dimensional Dirac operator

D = ε̂rαβ
[
2Jkl∂αhlAβ + JαβAk

]
ΓkDr . (11)

The solutions of the modified Dirac equation are obtained as spinors which are covariantly constant
with respect to the coordinate r:

DrΨ = 0 . (12)
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Non-vanishing spinors Ψ1 = ∂rΨ satisfying ΓrΨ1 = 0 are not possible. Ψ defines super-symmetry
for the generalized eigen modes if the additional condition

Ψ = NΨ0 (13)

is satisfied. The interpretation as super-conformal symmetries makes sense if the Fourier coeffi-
cients of zero modes and their conjugates are anticommuting Grassmann numbers. The zero modes
which are not of this form do not generate super-conformal symmetries and might correspond to
massless particles. TGD based vision about Higgs mechanism suggest the interpretation of nk as a
non-conserved gravitational four-momentum whose time average defines inertial four-momentum of
parton. The sum of the partonic four-momenta would be identified as the classical four-momentum
associated with the interior of the space-time sheet.

The covariant derivatives Dα involve only CP2 spinor connection and the metric induced from
CP2. Dr involves CP2 spinor connection unless X3

l is of form X1 ×X2 ⊂ M4 × CP2. The eigen
modes of D are correspond to the solutions of

DΨ = λNΨ (14)

The first guess is that N = nkγk corresponds to the tangential light-like vector nk = Φ∂rhk

where Φ is a normalization factor which can depend on position.
The obvious objection is that with this assumption it is difficult to understand how Dirac

determinant can correspond to an absolute extremum of Kähler action for 4-D space-time sheet
containing partonic 3-surfaces as causal determinants (

√
g4 = 0). However, if one can select a

unique M4 time coordinate, say as that associated with the rest system for the average four-
momentum defined as Chern-Simons Noether charge, then one can assign to nk a unique dual
obtained by changing the sign of its spatial components. The condition that this vector is tangential
to the 4-D space-time sheet would provide information about the space-time sheet and bring in
4-dimensionality. At this stage one must however leave the question about the choice of nk open.

One should be able to fix Φ apart from overall normalization. First of all, the requirement that
zero modes defines super symmetries implies the condition [D,nkΓk]Ψ = 0 for zero modes. This
condition boils down to the requirement

Dr(Φ∂rhkΓk)Ψ = 0 . (15)

This in turn boils down to a condition

Dr∂rh
k +

∂rΦ
Φ

∂rh
k = 0 . (16)

These conditions in turn guarantee that the condition

Dr(hkl∂rhk∂rhl) = 0 (17)

implied by the light-likeness condition are satisfied. Since Φ is determined apart from a multiplica-
tive constant from the light-likeness condition the system is internally consistent. The conditions
above are not general coordinate invariant so that the coordinate r must correspond to a physically
preferred coordinate perhaps defined by the conditions above.

One can express the eigenvalue equation in the form
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∂rΨ = λOΨ ,

O = (Γ̂r)−1N ,

(Γ̂r)−1 =
Γ̂r

akalhkl
, Γ̂r ≡ akΓk . (18)

This equation defines a flow with r in the role of a time parameter. The solutions of this equation
can be formally expressed as

Ψ(r, z, z) = Peλ
∫
O(r,z,z)drΨ0(z, z) . (19)

Here P denotes the ordered exponential needed because the operators O(r, zz) need not commute
for different values of r.

3.3 Can one allow light-like causal determinants with 3-D CP2 projec-
tion?

The standard quantum field theory wisdom would suggest that light-like partonic 3-surfaces which
are extremals of the Chern-Simons action correspond only to what stationary phase approximation
gives when vacuum functional is the product of exponent of Kähler function resulting from Dirac
determinant and an imaginary exponent of Chern-Simons action whose coefficient is proportional
to the central charge of Kac-Moody algebras associated with CP2 degrees of freedom.

One cannot exclude the possibility that 3-D light-like causal determinants might be required
by the general consistency of the theory. The identification of the exponent of Kähler function
as Dirac determinant remains a viable hypothesis for this option. ”Off mass shell” breaking of
super-conformal symmetries is implied since modified Dirac equation implies the conservation of
super conformal currents only when CP2 projection is at most 2-dimensional.

3.4 Some problems of TGD as almost-topological QFT and their reso-
lution

There are some problems involved with the precise definition of the quantum TGD as an almost-
topological QFT at the partonic level and the resolution of these problems leads to an unexpected
connection between cosmology and parton level physics.

1. Three problems

The proposed view about partonic dynamics is plagued by three problems.

1. The definition of supercanonical and super-Kac-Moody charges in M4 degrees of freedom
poses a problem. These charges are simply vanishing since M4 coordinates do not appear in
field equations.

2. Classical field equations for the C-S action imply that this action vanishes identically which
would suggest that the dynamics does not depend at all on the value of k. The central
extension parameter k determines the over-all scaling of the eigenvalues of the modified
Dirac operator. 1/k- scaling occurs for the eigenvalues so that Dirac determinant scales
by a finite power kN if the number N of the allowed eigenvalues is finite for the algebraic
extension considered. A constant Nlog(k) is added to the Kähler function and its effect
seems to disappear completely in the normalization of states.
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3. The general picture about Jones inclusions and the possibility of separate Planck constants
in M4 and CP2 degrees of freedom suggests a close symmetry between M4 and CP2 degrees
of freedom at the partonic level. Also in the construction of the geometry for the world of
classical worlds the symplectic and Kähler structures of both light-cone boundary and CP2

are in a key role. This symmetry should be somehow coded by the Chern-Simons action.

2. A possible resolution of the problems

A possible cure to the above described problems is based on the modification of Kähler gauge
potential by adding to it a gradient of a scalar function Φ with respect to M4 coordinates.

1. This implies that super-canonical and super Kac-Moody charges in M4 degrees of freedom
are non-vanishing.

2. Chern-Simons action is non-vanishing if the induced CP2 Kähler form is non-vanishing. If
the imaginary exponent of C-S action multiplies the vacuum functional, the presence of the
central extension parameter k is reflected in the properties of the physical states.

3. The function Φ could code for the value of k(M4) via a proportionality constant

Φ =
k(M4)
k(CP2)

Φ0 , (20)

Here k(CP2) is the central extension parameter multiplying the Chern-Simons action for CP2

Kähler gauge potential. This tricks does just what is needed since it multiplies the Noether
currents and super currents associated with M4 degrees of freedom with k(M4) instead of
k(CP2).

The obvious breaking of U(1) gauge invariance looks strange at first but it conforms with
the fact that in TGD framework the canonical transformations of CP2 acting as U(1) gauge
symmetries do not give to gauge degeneracy but to spin glass degeneracy since they act as
symmetries of only vacuum extremals of Kähler action.

3. How to achieve Lorentz invariance?

Lorentz invariance fixes the form of function Φ uniquely as the following argument demon-
strates.

1. Poincare invariance would be broken in any case for a given light-cone in the decomposition
CH = ∪mCHm of the configuration space to sub-configuration spaces associated with light-
cones at various locations of M4 but since the functions Φ associated with various light cones
would be related by a translation, translation invariance would not be lost.

2. The selection of Φ should not break Lorentz invariance. If Φ depends on the Lorentz proper
time a only, this is partially achieved. Momentum currents would be proportional to mk

and become light like at the boundary of the light-cone. This fits very nicely with the
interpretation that the matter emanates from the tip of the light cone in Robertson-Walker
cosmology.

Lorentz invariance poses even stronger conditions on Φ.

23



1. Partonic four-momentum defined as Chern-Simons Noether charge is definitely not conserved
and must be identified as gravitational four-momentum whose time average corresponds
to the conserved inertial four-momentum assignable to the Kähler action [D3, D5]. This
identification is very elegant since also gravitational four-momentum is well-defined although
not conserved.

2. Lorentz invariance implies that mass squared is constant of motion. Hence it is interesting
to look what expression for Φ results if the gravitational mass defined as Noether charge for
C-S action is conserved. The components of the four-momentum for Chern-Simons action
are given by

P k =
∂LC−S
∂(∂αa)

mkl∂mla .

Chern-Simons action is proportional to Aα = Aa∂αa so that one has

P k ∝ ∂aΦ∂mka = ∂aΦ
mk

a
.

The conservation of gravitational mass gives Φ ∝ a. Since CP2 projection must be 2-
dimensional, M4 projection is 1-dimensional so that mass squared is indeed conserved.

Thus one could write

Φ =
k(M4)
k(CP2)

xθ(a)
a

R
, (21)

where R the radius of geodesic sphere of CP2 and x a numerical constant which could be
fixed by quantum criticality of the theory. Chern-Simons action density does not depend
on a for this choice and this independence guarantees that the earlier ansatz satisfies field
equations. The presence of the step function θ(a) tells that Φ is non-vanishing only inside
light-cone and gives to the gauge potential delta function term which is non-vanishing only
at the light-cone boundary and makes possible massless particles.

3. If M4 projection is 1-dimensional, only homologically charged partonic 3-surfaces can carry
gravitational four-momentum. This is not a problem sinceM4 projection can be 2-dimensional
in the general case. For CP2 type extremals, ends of cosmic strings, and wormhole contacts
the non-vanishing of homological charge looks natural. For wormhole contacts 3-D CP2 pro-
jection suggests itself and is possible only if one allows also quantum fluctuations around
light-like extremals of Chern-Simons action. The interpretation could be that for a vanishing
homological charge boundary conditions force X4 to approach vacuum extremal at partonic
3-surfaces.

This picture does not fit completely with the picture about particle massivation provided by
CP2 type extremals. Massless partons must correspond to 3-surfaces at light-cone boundary
in this picture and light-likeness allows only linear motion so that inertial mass defined as
average must vanish.

5. Comment about quantum classical correspondence

The proposed general picture allows to define the notion of quantum classical correspondence
more precisely. The identification of the time average of the gravitational four-momentum for
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C-S action as a conserved inertial four-momentum associated with the Kähler action at a given
space-time sheet of a finite temporal duration (recall that we work in the zero energy ontology) is
the most natural definition of the quantum classical correspondence and generalizes to all charges.

In this framework the identification of gravitational four-momentum currents as those associ-
ated with 4-D curvature scalar for the induced metric of X4 could be seen as a phenomenological
manner to approximate partonic gravitational four-momentum currents using macroscopic cur-
rents, and the challenge is to demonstrate rigorously that this description emerges from quantum
TGD.

For instance, one could require that at a given moment of time the net gravitational four-
momentum of Int(X4) defined by the combination of the Einstein tensor and metric tensor equals
to that associated with the partonic 3-surfaces. This identification, if possible at all, would certainly
fix the values of the gravitational and cosmological constants and it would not be surprising if
cosmological constant would turn out to be non-vanishing.

3.5 The eigenvalues of D as complex square roots of conformal weight
and connection with Higgs mechanism?

An alternative interpretation for the eigenvalues of D emerges from the TGD based description of
particle massivation. The eigenvalues could be interpreted as complex square roots of conformal
weights in the sense that |λ|2 would have interpretation as a conformal weight. There is of course
the possibility of numerical constant of proportionality.

The physical motivation for the interpretation is that λ is in the same role as the mass term
in the ordinary Dirac equation and thus indeed square root of mass squared proportional to the
conformal weight. The vacuum expectation of Higgs would correspond to that for λ and Higgs
contribution to the mass squared would correspond to the p-adic thermodynamical expectation
value 〈|λ|2〉 [C9]. Additional contributions to mass squared would come from super conformal and
modular degrees of freedom. The interpretation of the generalized eigenvalue as a Higgs field is
also natural because the generalized eigen values of the modified Dirac operator can depend on
position.

3.6 Is the spectrum of D expressible in terms of branches of an inverse
of some zeta function?

Γ̂r vanishes as X3
l approaches to a vacuum extremal so that its inverse fails to exist. This requires

that NΨ approaches zero in such a manner that the action of O on Ψ given by

OΨ =
Φ

akalhkl
ak∂rh

lγkγlΨ =
Φ√

akalhkl
(A+B)Ψ ,

A = ekhkl∂rh
l ,

B =
1
2
ek∂rh

lΣkl ,

ek =
ak√
akalhkl

(22)

gives a finite and well-defined result. This poses conditions on Φ already fixed by the requirement
that zero modes induces super- conformal symmetries.

The expectation is that the condition

Φ√
akalhkl

(A+B)Ψ = KΨ , (23)

25



where K is constant, can be posed asymptotically so that it becomes possible to speak about
asymptotic eigen-states of the ”Hamiltonian” O. In the non-asymptotic region O depends on r
so that global eigen-states are not possible in general. An interpretation in terms of interactions
is natural. In the asymptotic region Ψ would behave as Ψ ∝ exp(λKr). Since the sigma matri-
ces defined by the commutators of time like M4 gamma matrices and CP2 gamma matrices are
antihermitian, the eigenvalues of B are expected to be imaginary. If the surface approaches asymp-
totically X1 × X2 ⊂ M4 × CP2, only B with two opposite, and in general complex, eigenvalues
contributes to the asymptotic condition so that K = ±iK1 become the eigenvalues of O. In a more
general case one has K = K0 ± iK1.

Concerning the spectrum of λ, an interesting possibility suggested by the number theoretic
considerations [E8, E1] is that u = ekr/r0 , where k is some suitably chosen numerical factor, is the
natural coordinate variable so that the exponents of r would transform to powers of u. If so, the
numbers

∆ =
1
k

(K0 ± iK1)λ

could be interpreted as dynamical conformal weights having also complex values. This is however
not the only possible interpretation (see below).

By the earlier number theoretic speculations the allowed eigenvalues could relate in a simple
manner to the zeros of Riemann Zeta or of polyzeta in the case that X4 contains several partonic
3-surfaces so that it becomes possible to introduce the notion of bound state conformal weight
[E1]. For k = 2K0 one has Re(∆) = 1/2 guaranteing that the conformal weights are at the
critical line. This spectrum has been suggested earlier for the conformal weights associated with
the super-canonical representations defined at δM4

± on basis of number theoretical considerations
[E8]. Asymptotia would in this case correspond to the intersection of X3

l ∪M4
± and need not mean

to an exact vacuum extremal. The recent proposal would relate this hypothesis directly to the
dynamics of modified Dirac operator.

It is however quite possible that the spectrum is determined by the requirement that p-
adicization is possible rather than by some finiteness condition or boundary conditions as in the
case of ordinary Schrödinger equation. If the exponents qiy are algebraic numbers for y the imag-
inary part of zero of Riemann Zeta and for q prime (and therefore for any rational), spinor modes
exist p-adically for a given rational value of the coordinate u in a suitable algebraic extension of
the p-adic numbers for given p. Also the number theoretical building blocks n1/2+iy of Riemann
Zeta exist in suitable algebraic extensions of p-adic numbers at zeros of Zeta and their integer
multiples.

One can consider also more general zeta function coding number theoretical data about partonic
2-surface and number theoretic arguments suggest that a zeta expressible as rational function might
be a better choice.

3.7 Super-conformal symmetries

The topological character of the solutions spectrum makes possible the expected and actually
even larger conformal symmetries in X2 degrees of freedom. Arbitrary diffeomorphisms of CP2,
including local SU(3) and its holomorphic counterpart, act as symmetries of the non-vacuum
solutions. Also the canonical transformations of CP2 inducing a U(1) gauge transformation are
symmetries. More generally, the canonical transformations of δM4

± × CP2 define configuration
space symmetries.

Diffeomorphisms of M4 respecting the light-likeness condition define Kac-Moody symmetries.
In particular, holomorphic deformations of X3

l defined in E2 factor of M2 × E2 compensated
by a hyper-analytic deformation in M2 degrees taking care that light-likeness is not lost, act as
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symmetry transformations. This requires that M2 and E2 contributions of the deformation to the
induced metric compensate each other.

The fact that the modified Dirac equation reduces to a one-dimensional Dirac equation allows
the action of Kac-Moody algebra as a symmetry algebra of spinor fields. In M4 degrees of freedom
X2-local SL(2,C) acts as super-conformal symmetries and extends the SU(2) Kac-Moody algebra
of N = 4 super-conformal algebra to SL(2, C). The reduction to SU(2) occurs naturally. These
symmetries act on all spinor components rather than on the second spinor chirality or right handed
neutrinos only. Also electro-weak U(2) acts as X2-local Kac-Moody algebra of symmetries. Hence
all the desired Kac-Moody symmetries are realized.

The action of Super Kac-Moody symmetries corresponds to the addition of a linear combination
of zero modes of D to a given eigen mode. This defines a symmetry if zero modes satisfy the
additional condition NΨ = 0 implied by Ψ = NΨ0 in turn guaranteed by the already described
conditions. These symmetries are super-conformal symmetries with respect to z and z.

The radial conformal symmetries generalize the dynamical conformal symmetries characterizing
CP2 type vacuum extremals and could be regarded as dynamical conformal symmetries defining the
spectrum of super-canonical conformal weights assigned originally to the radial light-like coordinate
of δM4

±. It deserves to be emphasized that the topological QFT character of TGD at fundamental
level broken only by the light-likeness of X3

l carrying information about H metric makes possible
these symmetries.

N = 4 super-conformal symmetry corresponding to the maximal representation with the group
SU(2)×SU(2)×U(1) acting as rotations and electro-weak symmetries on imbedding space spinors
is in question. This symmetry is broken for light-like 3-surfaces not satisfying field equations. It
seems that rotational SU(2) can be extended to the full Lorentz group.

3.8 How the super-conformal symmetries of TGD relate to the conven-
tional ones?

The representation of super-symmetries as an addition of anticommuting zero modes to the second
quantized spinor field defined by the superposition of non-zero modes of the modified Dirac equation
differs radically from the standard realization based on the replacement of the world sheet or target
space coordinates with super-coordinates. Also the fundamental role of the generalized eigen modes
of the modified Dirac operator is something new and absolutely essential for the understanding of
how super-conformal invariance is broken: the breaking of super-symmetries is indeed the basic
problem of the super-string theories.

Since the spinor fields in question are not Majorana spinors the standard super-field formalism
cannot work in TGD context. It is however interesting to look to what extent this formalism
generalizes and whether it allows some natural modification allowing to formally integrate the
notions of the bosonic action and corresponding modified Dirac action.

1. One can consider the formal introduction of super fields by replacing of X3
l coordinates by

super-coordinates requiring the introduction of anti-commuting parameters θ and θ trans-
forming as H-spinors of definite chirality, which is not consistent with Majorana condition.
Using real coordinates xα for X3

l , one would have

xα → Xα = xα + θΓ̂αΨ + ΨΓ̂αθ ,

Super-conformal symmetries would add to θ a zero mode with Grassmann number valued
coefficient. The replacement zα → Xα for the arguments of CP2 and M4 coordinates would
super-symmetrize the field C-S action density. As a matter fact, the super-symmetrization
is non-trivial only in radial degree of freedom since only Γ̂r is non-vanishing.
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2. Also imbedding space coordinates could be formally replaced with super-fields using a similar
recipe and super-symmetries would act on them. The topological character of Chern-Simons
action would allow the super-symmetries induced by the translation of θ by an anticom-
muting zero mode as formal symmetries at the level of the imbedding space. In both cases
it is however far from clear whether the formal super-symmetrization has any real physical
meaning.

3. The notion of super-surface suggests itself and would mean that imbedding space Θ param-
eters are functions of single θ parameter assignable with X3

l . A possible representation of
super-part of the imbedding is a generalization of ordinary imbedding in terms of constraints
Hi)(hk) = 0, i = 1, 2.... Symmetries allow only linear functions so that one would have

cαi)(r, z, z)Θα = 0 .

A hyper-plane in the space of theta parameters is obtained. Since only single theta parameter
is possible in integral the number of constraints is seven and one obtains the modified Dirac
action from the super-space imbedding.

Consider next the basic difficulty and its resolution.

1. The super-conformal symmetries do not generalize to the level of action principle in the
standard sense of the word and the reason is the failure of the Majorana property forced
by the separate conservation of quark and lepton numbers so that the standard super-space
formalism remains empty of physical content.

2. One can however consider the modification of the integration measure
∏
i dθidθi over Grass-

mann parameters by replacing the product of bilinears with

dθγ1dθdθγ2dθ...

analogous to the product dx1 ∧ dx2... (where γk would be gamma matrices of the imbedding
space) transforming like a pseudoscalar. It seems that the replacement of product with wedge
product leads to a trivial theory. This formalism could work for super fields obeying Weyl
condition instead of Majorana condition and it would be interesting to find what kind of
super-symmetric field theories it would give rise to.

The requirement that the number of Grassmann parameters given by 2D is the number of
spinor components of definite chirality (counting also conjugates) given by 2× 2D/2−1 gives
critical dimension D = 8, which suggest that this kind of quantum field theory might exist.
As found, the zero modes which are not of form Ψ = NΨ0 do not generate super-conformal
symmetries in the strict sense of the word and might correspond to light particles. One
could ask whether chiral SUSY in M4 × CP2 might describe the low energy dynamics of
corresponding light parton states. General arguments do not however support space-time
super-symmetry.

3. Because of the light-likeness the super-symmetric variant of C-S action should involve the
modified gamma matrices Γ̂α instead of the ordinary ones. Since only Γ̂r is non-vanishing
for the extremals of C-S action and since super-symmetrization takes place for the light-
like coordinate r only, the integration measure must be defined as dθΓ̂rdθ, with θ perhaps
assignable to a fixed covariantly constant right-handed neutrino spinor and Γ̂r the inverse of
Γ̂r. This action gives rise to the modified Dirac action with the modified gamma matrices
emerging naturally from the Taylor expansion of the C-S action in powers of super-coordinate.
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3.9 Absolute extremum property for Kähler action implies dynamical
Kac-Moody and super conformal symmetries

The extremal property for Kähler action with respect to variations of time derivatives of initial
values keeping hk fixed at X3 implies the existence of an infinite number of conserved charges
assignable to the small deformations of the extremum and to H isometries. Also infinite number
of local conserved super currents assignable to second variations and to covariantly constant right
handed neutrino are implied. The corresponding conserved charges vanish so that the interpreta-
tion as dynamical gauge symmetries is appropriate. This result provides strong support that the
local extremal property is indeed consistent with the almost-topological QFT property at parton
level.

The starting point are field equations for the second variations. If the action contain only
derivatives of field variables one obtains for the small deformations δhk of a given extremal

∂αJ
α
k = 0 ,

Jαk =
∂2L

∂hkα∂h
l
β

δhlβ , (24)

where hkα denotes the partial derivative ∂αhk. A simple example is the action for massless scalar
field in which case conservation law reduces to the conservation of the current defined by the
gradient of the scalar field. The addition of mass term spoils this conservation law.

If the action is general coordinate invariant, the field equations read as

DαJ
α,k = 0 (25)

whereDα is now covariant derivative and index raising is achieved using the metric of the imbedding
space.

The field equations for the second variation state the vanishing of a covariant divergence and
one obtains conserved currents by the contraction this equation with covariantly constant Killing
vector fields jkA of M4 translations which means that second variations define the analog of a local
gauge algebra in M4 degrees of freedom.

∂αJ
A,α
n = 0 ,

JA,αn = Jα,kn jAk . (26)

Conservation for Killing vector fields reduces to the contraction of a symmetric tensor with Dkjl
which vanishes. The reason is that action depends on induced metric and Kähler form only.

Also covariantly constant right handed neutrino spinors ΨR define a collection of conserved
super currents associated with small deformations at extremum

Jαn = Jα,kn γkΨR ,

. (27)

Second variation gives also a total divergence term which gives contributions at two 3-dimensional
ends of the space-time sheet as the difference

Qn(X3
f )−Qn(X3) = 0 ,

Qn(Y 3) =
∫
Y 3
d3xJn , Jn = J tkhklδh

l
n . (28)
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The contribution of the fixed end X3 vanishes. For the extremum with respect to the variations
of the time derivatives ∂thk at X3 the total variation must vanish. This implies that the charges
Qn defined by second variations are identically vanishing

Qn(X3
f ) =

∫
X3
f

Jn = 0 . (29)

Since the second end can be chosen arbitrarily, one obtains an infinite number of conditions anal-
ogous to the Virasoro conditions. The analogs of unbroken loop group symmetry for H isometries
and unbroken local super symmetry generated by right handed neutrino result. Thus extremal
property is a necessary condition for the realization of the gauge symmetries present at partonic
level also at the level of the space-time surface. The breaking of super-symmetries could perhaps
be understood in terms of the breaking of these symmetries for light-like partonic 3-surfaces which
are not extremals of Chern-Simons action.

4 Ricci flatness and divergence cancellation

Divergence cancellation in configuration space integration requires Ricci flatness and in this section
the arguments in favor of Ricci flatness are discussed in detail.

4.1 Inner product from divergence cancellation

Forgetting the delicacies related to the non-determinism of the Kähler action, the inner product is
given by integrating the usual Fock space inner product defined at each point of the configuration
space over the reduced configuration space containing only the 3-surfaces Y 3 belonging to δH =
δM4

+ × CP2 (’lightcone boundary’) using the exponent exp(K) as a weight factor:

〈Ψ1|Ψ2〉 =
∫

Ψ1(Y 3)Ψ2(Y 3)exp(K)
√
GdY 3 ,

Ψ1(Y 3)Ψ2(Y 3) ≡ 〈Ψ1(Y 3)|Ψ2(Y 3)〉Fock . (30)

The degeneracy for the absolute minima of Kähler action implies additional summation over the
degenerate minima associated with Y 3. The restriction of the integration on light cone boundary
is Diff4 invariant procedure and resolves in elegant manner the problems related to the integration
over Diff4 degrees of freedom. A variant of the inner product is obtained dropping the bosonic
vacuum functional exp(K) from the definition of the inner product and by assuming that it is
included into the spinor fields themselves. Probably it is just a matter of taste how the necessary
bosonic vacuum functional is included into the inner product: what is essential that the vacuum
functional exp(K) is somehow present in the inner product.

The unitarity of the inner product follows from the unitary of the Fock space inner product
and from the unitarity of the standard L2 inner product defined by configuration space integration
in the set of the L2 integrable scalar functions. It could well occur that Diff4 invariance implies
the reduction of the configuration space integration to C(δH).

Consider next the bosonic integration in more detail. The exponent of the Kähler function
appears in the inner product also in the context of the finite dimensional group representations. For
the representations of the noncompact groups (say SL(2, R)) in coset spaces (now SL(2, R)/U(1)
endowed with Kähler metric) the exponent of Kähler function is necessary in order to get square
integrable representations [26]. The scalar product for two complex valued representation functions
is defined as
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(f, g) =
∫
fgexp(nK)

√
gdV . (31)

By unitarity, the exponent is an integer multiple of the Kähler function. In the present case only
the possibility n = 1 is realized if one requires a complete cancellation of the determinants. In
finite dimensional case this corresponds to the restriction to single unitary representation of the
group in question.

The sign of the action appearing in the exponent is of decisive importance in order to make
theory stable. The point is that the theory must be well defined at the limit of infinitely large
system. Minimization of action is expected to imply that the action of infinitely large system
is bound from above: the generation of electric Kähler fields gives negative contributions to the
action. This implies that at the limit of the infinite system the average action per volume is non-
positive. For systems having negative average density of action vacuum functional exp(K) vanishes
so that only configurations with vanishing average action per volume have significant probability.
On the other hand, the choice exp(−K) would make theory unstable: probability amplitude would
be infinite for all configurations having negative average action per volume. In the fourth part of
the book it will be shown that the requirement that average Kähler action per volume cancels has
important cosmological consequences.

Consider now the divergence cancellation in the bosonic integration. One can develop the
Kähler function as a Taylor series around maximum of Kähler function and use the contravariant
Kähler metric as a propagator. Gaussian and metric determinants cancel each other for a unique
vacuum functional. Ricci flatness guarantees that metric determinant is constant in complex
coordinates so that one avoids divergences coming from it. The non-locality of the Kähler function
as a functional of the 3-surface serves as an additional regulating mechanism: if K(X3) were a
local functional of X3 one would encounter divergences in the perturbative expansion.

The requirement that quantum jump corresponds to a quantum measurement in the sense of
quantum field theories implies that quantum jump involves localization in zero modes. Localization
in the zero modes implies automatically p-adic evolution since the decomposition of the configu-
ration space into sectors DP labelled by the infinite primes P is determined by the corresponding
decomposition in zero modes. Localization in zero modes would suggest that the calculation of the
physical predictions does not involve integration over zero modes: this would dramatically sim-
plify the calculational apparatus of the theory. Probably this simplification occurs at the level of
practical calculations if U -matrix separates into a product of matrices associated with zero modes
and fiber degrees of freedom.

One must also calculate the predictions for the ratios of the rates of quantum transitions to
different values of zero modes and here one cannot actually avoid integrals over zero modes. To
achieve this one is forced to define the transition probabilities for quantum jumps involving a
localization in zero modes as

P (x, α→ y, β) =
∑
r,s

|S(r, α→ s, β)|2|Ψr(x)|2|Ψs(y)|2 ,

where x and y correspond to the zero mode coordinates and r and s label a complete state functional
basis in zero modes and S(r,m→ s, n) involves integration over zero modes. In fact, only in this
manner the notion of the localization in the zero modes makes mathematically sense at the level
of S-matrix. In this case also unitarity conditions are well-defined. In zero modes state function
basis can be freely constructed so that divergence difficulties could be avoided. An open question
is whether this construction is indeed possible.

Some comments about the actual evaluation of the bosonic functional integral are in order.
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1. Since configuration space metric is degenerate and the bosonic propagator is essentially the
contravariant metric, bosonic integration is expected to reduce to an integration over the
zero modes. For instance, isometry invariants are variables of this kind. These modes are
analogous to the parameters describing the conformal equivalence class of the orbit of the
string in string models.

2. αK is a natural small expansion parameter in configuration space integration. It should
be noticed that αK , when defined by the criticality condition, could also depend on the
coordinates parameterizing the zero modes.

3. Semiclassical approximation, which means the expansion of the functional integral as a sum
over the extrema of the Kähler function, is a natural approach to the calculation of the
bosonic integral. Symmetric space property suggests that for the given values of the zero
modes there is only single extremum and corresponds to the maximum of the Kähler function.
There are theorems (Duistermaat-Hecke theorem) stating that semiclassical approximation
is exact for certain systems (for example for integrable systems [27]). Symmetric space
property suggests that Kähler function might possess the properties guaranteing the exact-
ness of the semiclassical approximation. This would mean that the calculation of the integral∫
exp(K)

√
GdY 3 and even more complex integrals involving configuration space spinor fields

would be completely analogous to a Gaussian integration of free quantum field theory. This
kind of reduction actually occurs in string models and is consistent with the criticality of the
Kähler coupling constant suggesting that all loop integrals contributing to the renormaliza-
tion of the Kähler action should vanish. Also the condition that configuration space integrals
are continuable to p-adic number fields requires this kind of reduction.

4.2 Why Ricci flatness

It has been already found that the requirement of divergence cancellation poses extremely
strong constraints on the metric of the configuration space. The results obtained hitherto
are the following:
a) If the vacuum functional is the exponent of Kähler function one gets rid of the divergences
resulting from the Gaussian determinants and metric determinants: determinants cancel each
other.
b) The non-locality of the Kähler action gives good hopes of obtaining divergence free per-
turbation theory.

The following arguments show that Ricci flatness of the metric is a highly desirable property.

1. Dirac operator should be a well defined operator. In particular its square should be well
defined. The problem is that the square of Dirac operator contains curvature scalar, which
need not be finite since it is obtained via two infinite-dimensional trace operations from the
curvature tensor. In case of loop spaces [36] the Kähler property implies that even Ricci
tensor is only conditionally convergent. In fact, loop spaces with Kähler metric are Einstein
spaces (Ricci tensor is proportional to metric) and Ricci scalar is infinite.

In 3-dimensional case situation is even worse since the trace operation involves 3 summation
indices instead of one! The conclusion is that Ricci tensor had better to vanish in vibrational
degrees of freedom.

2. For Ricci flat metric the determinant of the metric is constant in geodesic complex coordinates
as is seen from the expression for Ricci tensor [37]
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Rkl̄ = ∂k∂l̄ln(det(g)) (32)

in Kähler metric. This obviously simplifies considerably functional integration over the con-
figuration space: one obtains just the standard perturbative field theory in the sense that
metric determinant gives no contributions to the functional integration.

3. The constancy of the metric determinant results not only in calculational simplifications:
it also eliminates divergences. This is seen by expanding the determinant as a functional
Taylor series with respect to the coordinates of the configuration space. In local complex
coordinates the first term in the expansion of the metric determinant is determined by Ricci
tensor

δ
√
g ∝ Rkl̄zkz̄l . (33)

In configuration space integration using standard rules of Gaussian integration this term
gives a contribution proportional to the contraction of the propagator with Ricci tensor. But
since the propagator is just the contravariant metric one obtains Ricci scalar as result. So,
in order to avoid divergences, Ricci scalar must be finite: this is certainly guaranteed if Ricci
tensor vanishes.

4. The following group theoretic argument suggests that Ricci tensor either vanishes or is diver-
gent. The holonomy group of the configuration space is a subgroup of U(n =∞) (D = 2n is
the dimension of the Kähler manifold) by Kähler property and Ricci flatness is guaranteed if
the U(1) factor is absent from the holonomy group. In fact Ricci tensor is proportional to the
trace of the U(1) generator and since this generator corresponds to an infinite dimensional
unit matrix the trace diverges: therefore given element of the Ricci tensor is either infinite or
vanishes. Therefore the vanishing of the Ricci tensor seems to be a mathematical necessity.
This naive argument doesn’t hold true in the case of loop spaces, for which Kähler metric
with finite non-vanishing Ricci tensor exists [36]. Note however that also in this case the sum
defining Ricci tensor is only conditionally convergent.

There are indeed good hopes that Ricci tensor vanishes. By the previous argument the van-
ishing of the Ricci tensor is equivalent with the absence of divergences in configuration space
integration. That divergences are absent is suggested by the non-locality of the Kähler function as
a functional of 3-surface: the divergences of local field theories result from the locality of interac-
tion vertices. Ricci flatness in vibrational degrees of freedom is not only necessary mathematically.
It is also appealing physically: one can regard Ricci flat configuration space as a vacuum solution
of Einstein’s equations Gαβ = 0.

4.3 Ricci flatness and Hyper Kähler property

Ricci flatness property is guaranteed if configuration space geometry is Hyper Kähler [38, 39] (there
exists 3 covariantly constant antisymmetric tensor fields, which can be regarded as representations
of quaternionic imaginary units). Hyper Kähler property guarantees Ricci flatness because the
contractions of the curvature tensor appearing in the components of the Ricci tensor transform
to traces over Lie algebra generators, which are SU(n) generators instead of U(n) generators so
that the traces vanish. In the case of the loop spaces left invariance implies that Ricci tensor in
the vibrational degrees is a multiple of the metric tensor so that Ricci scalar has an infinite value.
This is basically due to the fact that Kac-Moody algebra has U(1) central extension.

Consider now the arguments in favor of Ricci flatness of the configuration space.
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1. The canonical algebra of δM4
+ takes effectively the role of the U(1) extension of the loop

algebra. More concretely, the SO(2) group of the rotation group SO(3) takes the role of
U(1) algebra. Since volume preserving transformations are in question, the traces of the
canonical generators vanish identically and in finite-dimensional this should be enough for
Ricci flatness even if Hyper Kähler property is not achieved.

2. The comparison with CP2 allows to link Ricci flatness with conformal invariance. The ele-
ments of the Ricci tensor are expressible in terms of traces of the generators of the holonomy
group U(2) at the origin of CP2, and since U(1) generator is non-vanishing at origin, the
Ricci tensor is non-vanishing. In recent case the origin of CP2 is replaced with the maximum
of Kähler function and holonomy group corresponds to super-canonical generators labelled
by integer valued real parts k1 of the conformal weights k = k1 +iρ. If generators with k1 = n
vanish at the maximum of the Kähler function, the curvature scalar should vanish at the
maximum and by the symmetric space property everywhere. These conditions correspond
to Virasoro conditions in super string models.

A possible source of difficulties are the generators having k1 = 0 and resulting as commutators
of generators with opposite real parts of the conformal weights. It might be possible to assume
that only the conformal weights k = k1 +iρ, k1 = 0, 1, ... are possible since it is the imaginary
part of the conformal weight which defines the complexification in the recent case. This would
mean that the commutators involve only positive values of k1.

3. In the infinite-dimensional case the Ricci tensor involves also terms which are non-vanishing
even when the holonomy algebra does not contain U(1) factor. It will be found that symmetric
space property guarantees Ricci flatness even in this case and the reason is essentially the
vanishing of the generators having k1 = n at the maximum of Kähler function.

There are also arguments in favor of the Hyper Kähler property.

1. The dimensions of the imbedding space and space-time are 8 and 4 respectively so that the
dimension of configuration space in vibrational modes is indeed multiple of four as required
by Hyper Kähler property. Hyper Kähler property requires a quaternionic structure in the
tangent space of the configuration space. Since any direction on the sphere S2 defined by
the linear combinations of quaternionic imaginary units with unit norm defines a partic-
ular complexification physically, Hyper Kähler property means the possibility to perform
complexification in S2-fold manners.

2. S2-fold degeneracy is indeed associated with the definition of the complex structure of the
configuration space. First of all, the direction of the quantization axis for the spherical
harmonics or for the eigen states of Lorentz Cartan algebra at δM4

+ can be chosen in S2-
fold manners. Quaternion conformal invariance means Hyper Kähler property almost by
definition and the S2-fold degeneracy for the complexification is obvious in this case.

If these naive arguments survive a more critical inspection, the conclusion would be that the
effective 2-dimensionality of light like 3-surfaces implying generalized conformal and canonical
symmetries would also imply Hyper Kähler property of the configuration space and make the
theory well-defined mathematically. This obviously fixes the dimension of space-time surfaces as
well as the dimension of Minkowski space factor of the imbedding space.

In the sequel we shall show that Ricci flatness is guaranteed provided that the holonomy group
of the configuration space is isomorphic to some subgroup of SU(n =∞) instead of U(n =∞) (n
is the complex dimension of the configuration space) implied by the Kähler property of the metric.
We also derive an expression for the Ricci tensor in terms of the structure constants of the isometry
algebra and configuration space metric. The expression for the Ricci tensor is formally identical
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with that obtained by Freed for loop spaces: the only difference is that the structure constants of
the finite-dimensional group are replaced with the group Can(δH). Also the arguments in favor
of Hyper Kähler property are discussed in more detail.

4.4 The conditions guaranteing Ricci flatness

In the case of Kähler geometry Ricci flatness condition can be characterized purely Lie-algebraically:
the holonomy group of the Riemann connection, which in general is subgroup of U(n) for Kähler
manifold of complex dimension n, must be subgroup of SU(n) so that the Lie-algebra of this group
consists of traceless matrices. This condition is easy to derive using complex coordinates. Ricci
tensor is given by the following expression in complex vielbein basis

RAB̄ = RAC̄BC̄ , (34)

where the latter summation is only over the antiholomorphic indices C̄. Using the cyclic identities

∑
cycl C̄BD̄

RAC̄BD̄ = 0 , (35)

the expression for Ricci tensor reduces to the form

RAB̄ = RAB̄CC , (36)

where the summation is only over the holomorphic indices C. This expression can be regarded as a
trace of the curvature tensor in the holonomy algebra of the Riemann connection. The trace is taken
over holomorphic indices only: the traces over holomorphic and anti-holomorphic indices cancel
each other by the antisymmetry of the curvature tensor. For Kähler manifold holonomy algebra is
subalgebra of U(n), when the complex dimension of manifold is n and Ricci tensor vanishes if and
only if the holonomy Lie-algebra consists of traceless matrices, or equivalently: holonomy group is
subgroup of SU(n). This condition is expected to generalize also to the infinite-dimensional case.

We shall now show that if configuration space metric is Kähler and possesses infinite-dimensional
isometry algebra with the property that its generators form a complete basis for the tangent space
(every tangent vector is expressible as a superposition of the isometry generators plus zero norm
vector) it is possible to derive a representation for the Ricci tensor in terms of the structure con-
stants of the isometry algebra and of the components of the metric and its inverse in the basis
formed by the isometry generators and that Ricci tensor vanishes identically for the proposed
complexification of the configuration space provided the generators {HA,m 6=0, HB,n6=0} correspond
to zero norm vector fields of configuration space.

The general definition of the curvature tensor as an operator acting on vector fields reads

R(X,Y )Z = [∇X ,∇Y ]Z −∇[X,Y ]Z . (37)

If the vector fields considered are isometry generators the covariant derivative operator is given by
the expression

∇XY = (AdXY −Ad∗XY −Ad∗YX)/2 ,

(Ad∗XY,Z) = (Y,AdXZ) , (38)
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where AdXY = [X,Y ] and Ad∗X denotes the adjoint of AdX with respect to configuration space
metric.

In the sequel we shall assume that the vector fields in question belong to the basis formed by
the isometry generators. The matrix representation of AdX in terms of the structure constants
CX,Y :Z of the isometry algebra is given by the expression

AdmXn = CX,Y :Z ŶnZ
m ,

[X,Y ] = CX,Y :ZZ ,

Ŷ = g−1(Y, V )V , (39)

where the summation takes place over the repeated indices and Ŷ denotes the dual vector field
of Y with respect to the configuration space metric. From its definition one obtains for Ad∗X the
matrix representation

Ad∗mXn = CX,Y :Z Ŷ
mZn ,

Ad∗XY = CX,U :V g(Y, U)g−1(V,W )W = g(Y,U)g−1([X,U ],W )W , (40)

where the summation takes place over the repeated indices.
Using the representations of∇X in terms of AdX and its adjoint and the representations of AdX

and Ad∗X in terms of the structure constants and some obvious identities (such as C[X,Y ],Z:V =
CX,Y :UCU,Z:V ) one can by a straightforward but tedious calculation derive a more detailed ex-
pression for the curvature tensor and Ricci tensor. Straightforward calculation of the Ricci tensor
has however turned to be very tedious even in the case of the diagonal metric and in the following
we shall use a more convenient representation [36] of the curvature tensor applying in case of the
Kähler geometry.

The expression of the curvature tensor is given in terms of the so called Toeplitz operators TX
defined as linear operators in the ”positive energy part” G+ of the isometry algebra spanned by
the (1, 0) parts of the isometry generators. In present case the positive and negative energy parts
and cm part of the algebra can be defined just as in the case of loop spaces:

G+ = {HAk|k > 0} ,

G− = {HAk|k < 0} ,

G0 = {HAk|k = 0} . (41)

Here HAk denote the Hamiltonians generating the canonical transformations of δH. The positive
energy generators with non-vanishing norm have positive radial scaling dimension: k ≥ 0, which
corresponds to the imaginary part of the scaling momentum K = k1+iρ associated with the factors
(rM/r0)K . A priori the spectrum of ρ is continuous but it is quite possible that the spectrum of ρ
is discrete and ρ = 0 does not appear at all in the spectrum in the sense that the flux Hamiltonians
associated with ρ = 0 elements vanish for the maximum of Kähler function which can be taken to
be the point where the calculations are done.

TX differs from AdX in that the negative energy part of AdXY = [X,Y ] is dropped away:

TX : G+ → G+ ,

Y → [X,Y ]+ . (42)
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Here ”+” denotes the projection to ”positive energy” part of the algebra. Using Toeplitz operators
one can associate to various isometry generators linear operators Φ(X0), Φ(X−) and Φ(X+) acting
on G+:

Φ(X0) = TX0 , X0εG0 ,

Φ(X−) = TX− , X−εG− ,

Φ(X+) = −T ∗X− , X+εG+ . (43)

Here ”*” denotes hermitian conjugate in the diagonalized metric: the explicit representation Φ(X+)
is given by the expression [36]

Φ(X+) = D−1TX−D ,

DX+ = d(X)X− ,

d(X) = g(X−, X+) . (44)

Here d(X) is just the diagonal element of metric assumed to be diagonal in the basis used. denotes
the conformal factor associated with the metric.

The representations for the action of ,Φ(X0), Φ(X−) and Φ(X+) in terms of metric and structure
constants of the isometry algebra are in the case of the diagonal metric given by the expressions

Φ(X0)Y+ = CX0,Y+:U+U+ ,

Φ(X−)Y+ = CX−,Y+:U+U+ ,

Φ(X+)Y+ =
d(Y )
d(U)

CX−,Y−:U−U+ . (45)

The expression for the action of the curvature tensor in positive energy part G+ of the isometry
algebra in terms of the these operators is given as [36]:

R(X,Y )Z+ = {[Φ(X),Φ(Y )]− Φ([X,Y ])}Z+ . (46)

The calculation of the Ricci tensor is based on the observation that for Kähler manifolds Ricci
tensor is a tensor of type (1, 1), and therefore it is possible to calculate Ricci tensor as the trace of
the curvature tensor with respect to indices associated with G+.

Ricci(X+, Y−) = (Ẑ+, R(X+, Y−)Z+) ≡ Trace(R(X+, Y−)) ,

(47)

where the summation over Z+ generators is performed.
Using the explicit representations of the operators Φ one obtains the following explicit expres-

sion for the Ricci tensor

Ricci(X+, Y−) = Trace{[D−1TX+D,TY− ]− T[X+,Y−]|G0+G−

− D−1T[X+,Y−]|G+
D} . (48)

This expression is identical to that encountered in case of loop spaces and the following arguments
are repetition of those applying in the case of loop spaces.
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The second term in the Ricci tensor is the only term present in the finite-dimensional case.
This term vanishes if the Lie-algebra in question consists of traceless matrices. Since canonical
transformations are volume-preserving the traces of Lie-algebra generators vanish so that this term
is absent. The last term gives a non-vanishing contribution to the trace for the same reason.

The first term is quadratic in structure constants and does not vanish in case of loop spaces.
It can be written explicitly using the explicit representations of the various operators appearing in
the formula:

Trace{[D−1TX−D,TY− ]} =
∑
Z+,U+

[CX−,U−:Z−CY−,Z+:U+

d(U)
d(Z)

− CX−,Z−:U−CY−,U+:Z+

d(Z)
d(U)

] . (49)

Each term is antisymmetric under the exchange of U and Z and one might fail to conclude that
the sum vanishes identically. This is not the case. By the diagonality of the metric with respect
to radial quantum number, one has m(X−) = m(Y−) for the non-vanishing elements of the Ricci
tensor. Furthermore, one has m(U) = m(Z) −m(Y ), which eliminates summation over m(U) in
the first term and summation over m(Z) in the second term. Note however, that summation over
other labels related to canonical algebra are present.

By performing the change U → Z in the second term one can combine the sums together and
as a result one has finite sum

∑
0<m(Z)<m(X)

[CX−,U−:Z−CY−,Z+:U+

d(U)
d(Z)

= C
∑

0<m(Z)<m(X)

m(X)
m(Z)−m(X)

,

C =
∑
Z,U

CX,U :ZCY,Z:U
d0(U)
d0(Z)

. (50)

Here the dependence of d(X) = |m(X)|d0(X) on m(X) is factored out; d0(X) does not depend on
kX . The dependence on m(X) in the resulting expression factorizes out, and one obtains just the
purely group theoretic term C, which should vanish for the space to be Ricci flat.

The sum is quadratic in structure constants and can be visualized as a loop sum. It is instructive
to write the sum in terms of the metric in the canonical degrees of freedom to see the geometry
behind the Ricci flatness:

C =
∑
Z,U

g([Y, Z], U)g−1([X,U ], Z) . (51)

Each term of this sum involves a commutator of two generators with a non-vanishing norm. Since
tangent space complexification is inherited from the local coset space, the non-vanishing commuta-
tors in complexified basis are always between generators in Can6=0; that is they do not not belong
to rigid su(2)× su(3).

The condition guaranteing Ricci flatness at the maximum of Kähler function and thus every-
where is simple. All elements of type [X6=0, Y6=0] vanish or have vanishing norm. In case of CP2

Kähler geometry this would correspond to the vanishing of the U(2) generators at the origin of CP2

(note that the holonomy group is U(2) in case of CP2). At least formally stronger condition is that
the algebra generated by elements of this type, the commutator algebra associated with Can6=0,
consist of elements of zero norm. Already the (possibly) weaker condition implies that adjoint map
AdX 6=0 and its hermitian adjoint Ad∗X6=0

create zero norm states. Since isometry conditions involve
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also adjoint action the condition also implies that Can6=0 acts as isometries. More concrete form
for the condition is that all flux factors involving double Poisson bracket and three generators in
Can6=0 vanish:

Qe({HA, {HB , HC}}) = 0 , for HA, HB , HC in Can6=0 . (52)

The vanishing of fluxes involving two Poisson brackets and three Hamiltonians guarantees isometry
invariance and Ricci flatness and, as found in [B2], is implied by the [t, t] ⊂ h property of the Lie-
algebra of coset space G/H having symmetric space structure.

The conclusion is that the mere existence of the proposed isometry group (guaranteed by the
symmetric space property) implies the vanishing of the Ricci tensor and vacuum Einstein equa-
tions. The existence of the infinite parameter isometry group in turn follows basically from the
condition guaranteing the existence of the Riemann connection. Therefore vacuum Einstein equa-
tions seem to arise, not only as a consequence of a physically motivated variational principle but
as a mathematical consistency condition in infinite dimensional Kähler geometry. The flux repre-
sentation seems to provide elegant manner to formulate and solve these conditions and isometry
invariance implies Ricci flatness.

4.5 Is configuration space metric Hyper Kähler?

The requirement that configuration space integral integration is divergence free implies that config-
uration space metric is Ricci flat. The so called Hyper-Kähler metrics [39, 38, 40] are particularly
nice representatives of Ricci flat metrics. In the following the basic properties of Hyper-Kähler
metrics are briefly described and the problem whether Hyper Kähler property could realized in
case of M4

+ × CP2 is considered.

4.5.1 Hyper-Kähler property

Hyper-Kähler metric is a generalization of the Kähler metric. For Kähler metric metric tensor and
Kähler form correspond to the complex numbers 1 and i and therefore define complex structure
in the tangent space of the manifold. For Hyper Kähler metric tangent space allows three closed
Kähler forms I, J,K, which with respect to the multiplication obey the algebra of quaternionic
imaginary units and have square equal to - 1, which corresponds to the metric of Hyper Kähler
space.

I2 = J2 = K2 = −1 IJ = −JI = K, etc. . (53)

To define Kähler structure one must choose one of the Kähler forms or any linear combination
of I, J and K with unit norm. The group SO(3) rotates different Kähler structures to each
other playing thus the role of quaternion automorphisms. This group acts also as coordinate
transformations in Hyper Kähler manifold but in general fails to act as isometries.

If K is chosen to define complex structure then K is tensor of type (1, 1) in complex coordinates,
I and J being tensors of type (2, 0)+(0, 2). The forms I+ iJ and I− iJ are holomorphic and anti-
holomorphic forms of type (2, 0) and (0, 2) respectively and defined standard step operators I+ and
I− of SU(2) algebra. The holonomy group of Hyper-Kähler metric is always Sp(k), k ≤ dimM/4,
the group of k × k unitary matrices with quaternionic entries. This group is indeed subgroup of
SU(2k), so that its generators are traceless and Hyper Kähler metric is therefore Ricci flat.

Hyper Kähler metrics have been encountered in the context of 3-dimensional super symmetric
sigma models: a necessary prerequisite for obtaining N = 4 super-symmetric sigma model is that
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target space allows Hyper Kähler metric [41, 40]. In particular, it has been found that Hyper
Kähler property is decisive for the divergence cancellation.

Hyper-Kähler metrics arise also in monopole and instanton physics [39]. The moduli spaces for
monopoles have Hyper Kähler property. This suggests that Hyper Kähler property is characteristic
for the configuration (or moduli) spaces of 4-dimensional Yang Mills types systems. Since YM
action appears in the definition of configuration space metric there are hopes that also in present
case the metric possesses Hyper-Kähler property.

4.5.2 Does the ’almost’ Hyper-Kähler structure of CP2 lift to a genuine Hyper-Kähler
structure in configuration space?

The Hyper-Kähler property of configuration space metric does not seem to be in conflict with the
general structure of TGD.

1. In string models the dimension of the ”space-time” is two and Weyl invariance and complex
structures play a decisive role in the theory. In present case the dimension of the space-time
is four and one therefore might hope that quaternions play a similar role. Indeed, Weyl
invariance implies YM action in dimension 4 and as already mentioned moduli spaces of
instantons and monopoles enjoy the Hyper Kähler property.

2. Also the dimension of the imbedding space is important. The dimension of Hyper Kähler
manifold must be multiple of 4. The dimension of configuration space is indeed infinite
multiple of 8: each vibrational mode giving one ”8”.

3. The complexification of the configuration space in canonical degrees of freedom is inherited
from S2 × CP2 and CP2 Kähler form defines the symplectic form of configuration space.
The point is that CP2 Weyl tensor has 3 covariantly constant components, having as their
square metric apart from sign. One of them is Kähler form, which is closed whereas the
other two are non-closed forms and therefore fail to define Kähler structure. The group
SU(2) of electro-weak isospin rotations rotate these forms to each other. It would not be
too suprising if one could identify the configuration space counterparts of these forms as
representations of quaternionic units at the level of configuration space. The failure of the
Hyper Kähler property at the level of CP2 geometry is due to the electro-weak symmetry
breaking and physical intuition (in particular, p-adic mass calculations [6]) suggests that
electro-weak symmetry might not be broken at the level of configuration space geometry).

A possible topological obstruction for the Hyper Kähler property is related to the cohomology
of the configuration space: the three Kähler forms must be co-homologically trivial as is clear
from the following argument. If any of 3 quaternionic 2-form is cohomologically nontrivial then
by SO(3) symmetry rotating Kähler forms to each other all must be co-homologically nontrivial.
On the other hand, electro-weak isospin rotation leads to a linear combination of 3 Kähler forms
and the flux associated with this form is in general not integer valued. The point is however
that Kähler form forms only the (1, 1) part of the symplectic form and must be co-homologically
trivial whereas the zero mode part is same for all complexifications and can be co-homologically
nontrivial. The co-homological non-triviality of the zero mode part of the symplectic form is indeed
a nice feature since it fixes the normalization of the Kähler function apart from a multiplicative
integer. On the other hand the hypothesis that Kähler coupling strength is analogous to critical
temperature provides a dynamical (and perhaps equivalent) manner to fix the normalization of the
Kähler function.

Since the properties of the configuration space metric are inherited from M4
+ × CP2 then also

the Hyper Kähler property should be understandable in terms of the imbedding space geometry.
In particular, the complex structure in CP2 vibrational degrees of freedom is inherited from CP2.
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Hyper Kähler property implies the existence of a continuum (sphere S2) of complex structures:
any linear superposition of 3 independent Kähler forms defines a respectable complex structure.
Therefore also CP2 should have this continuum of complex structures and this is certainly not the
case.

Indeed, if we had instead of CP2 Hyper Kähler manifold with 3 covariantly constant 2-forms
then it would be easy to understand the Hyper Kähler structure of configuration space. Given the
Kähler structure of the configuration space would be obtained by replacing induced Kähler electric
and magnetic fields in the definition of flux factors Q(HA,m) with the appropriate component of
the induced Weyl tensor. CP2 indeed manages to be very nearly Hyper Kähler manifold!

How CP2 fails to be Hyper Kähler manifold can be seen in the following manner. The Weyl
tensor of CP2 allows three independent components, which are self dual as 2-forms and rotated to
each other by vielbein rotations.

W03 = W12 ≡ 2I3 = 2(e0 ∧ e3 + e1 ∧ e2) ,

W01 = W23 ≡ I1 = −e0 ∧ e1 − e2 ∧ e3 ,

W02 = W31 ≡ I2 = −e0 ∧ e2 − e3 ∧ e1 . (54)

The component I3 is just the Kähler form of CP2. Remaining components are covariantly constant
only with respect to spinor connection and not closed forms so that they cannot be interpreted
as Maxwell fields. Their squares equal however apart from sign with the metric of CP2, when
appropriate normalization factor is used. If these forms were covariantly constant Kähler action
defined by any linear superposition of these forms would indeed define Kähler structure in config-
uration space and the group SO(3) would rotate these forms to each other. The projections of the
components of the Weyl tensor on 3-surface define 3 vector fields as their duals and only one of
these vector fields (Kähler magnetic field) is divergenceless. One might regard these 3 vector fields
as counter parts of quaternion units associated with the broken Hyper Kähler structure.

One cannot exclude the possibility that the canonical invariance of the induced Kähler electric
field implies that the electric parts of the other two components of induced Weyl tensor are canon-
ically invariant. This is the minimum requirement. What is however obvious is that the magnetic
parts cannot be closed forms for arbitrary 3-surfaces at light cone boundary. One counter example
is enough and CP2 type extremals seem to provide this counter example: the components of the
induced Weyl tensor are just the same as they are for CP2 and clearly not canonically invariant.

Thus it seems that configuration space could allow an ’almost’ quaternionic structure broken
by electro-weak interactions but it cannot be inherited from CP2. An open question is whether
it allows genuine quaternionic structure. Good prospects for obtaining quaternionic structure
are provided by the quaternionic counterpart QP2 of CP2, which is 8-dimensional and has coset
space structure QP2 = Sp(3)/Sp(2)× Sp(1). This choice does not seem to be consistent with the
symmetries of the standard model. Note however that the over all symmetry group is obtained by
replacing complex numbers with quaternions on the matrix representation of the standard model
group.

4.5.3 Could different complexifications for M4
+ and light like surfaces induce Hyper

Kähler structure for configuration space?

Quaternionic structure means also the existence of a family of complex structures parameterized
by a sphere S2. The complex structure of the configuration space is inherited from the complex
structure of some light like surface.

In the case of the light cone boundary δM4
+ the complex structure corresponds to the choice

of quantization axis of angular momentum for the sphere rM = constant so that the coordinates
orthogonal to the quantization axis define a complex coordinate: the sphere S2 parameterizes these
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choices. Thus there is a temptation to identify the choice of quantization axis with a particular
imaginary unit and Hyper Kähler structure would directly relate to the properties rotation group.
This would bring an additional item to the list of miraculous properties of light like surfaces of
4-dimensional space-times.

This might relate to the fact that configuration space geometry is not determined by the
canonical algebra of CP2 localized with respect to the light cone boundary as one might first
expect but consists of M4

+ × CP2 Hamiltonians so that infinitesimal canonical transformation of
CP2 involves always also M4

+-canonical transformation. M4
+ Hamiltonians are defined by a function

basis generated as products of the Hamiltonians H3 and H1±iH2 generating rotations with respect
to three orthogonal axes, and two of these Hamiltonians are complexified.

Also the light like 3-surfacesX3
l associated with quaternion conformal invariance are determined

by some 2-surface X2 and the choice of complex coordinates and if X2 is sphere the choices are
labelled by S2. In this case, the presence of quaternion conformal structure would be almost
obvious since it is possible to choose some complex coordinate in several manners and the choices
are labelled by S2. The choice of the complex coordinate in turn fixes 2-surface X2 as a surface for
which the remaining coordinates are constant. X2 need not however be located at the elementary
particle horizon unless one poses additional constraint. One might hope that different choices of X2

resulting in this manner correspond to all possible different selections of the complex structure and
that this choice could fix uniquely the conformal equivalence class of X2 appearing as argument in
elementary particle vacuum functionals. If X2 has a more complex topology the identification is
not so clear but since conformal algebra SL(2,C) containing algebra of rotation group is involved,
one might argue that the choice of quantization axis also now involves S2 degeneracy. If these
arguments are correct one could conclude that Hyper Kähler structure is implicitly involved and
guarantees Ricci flatness of the configuration space metric.

5 Consistency conditions on metric

In this section various consistency conditions on the configuration space metric are discussed. In
particular, it will be found that the conditions guaranteing the existence of Riemann connection
in the set of all(!) vector fields (including zero norm vector fields) gives very strong constraints
on the general form of the metric and that these constraints are indeed satisfied for the proposed
metric.

5.1 Consistency conditions on Riemann connection

To study the consequences of the consistency conditions, it is most convenient to consider matrix
elements of the metric in the basis formed by the isometry generators themselves. The consistency
conditions state the covariant constancy of the metric tensor

∇Zg(X,Y ) = g(∇ZX,Y ) + g(X,∇ZY ) = Z · g(X,Y ) . (55)

Z · g(X,Y ) vanishes, when Z generates isometries so that conditions state the covariant constancy
of the matrix elements in this case. It must be emphasized that the ill defined-ness of the inner
products of form g(∇ZX,Y ) is just the reason for requiring infinite-dimensional isometry group.
The point is that ∇ZX need not to belong to the Hilbert space spanned by the tangent vector
fields since the terms of type Zg(X,Y ) do not necessarily exist mathematically [36]. The elegant
solution to the problem is that all tangent space vector fields act as isometries so that these
quantities vanish identically.

The conditions of Eq. (55) can be written explicitly by using the general expression for the
covariant derivative
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g(∇ZX,Y ) = [Zg(X,Y ) +Xg(Z, Y )− Y g(Z,X)
+ g(AdZX −Ad∗ZX −Ad∗XZ, Y )]/2 . (56)

What happens is that the terms depending on the derivatives of the matrix elements (terms of
type Zg(X,Y ) ) cancel each other (these terms vanish for the metric invariant under isometries),
and one obtains the following consistency conditions

g(AdZX −Ad∗ZX −Ad∗XZ, Y ) + g(X,AdZY −Ad∗ZY −Ad∗Y Z) = 0 . (57)

Using the explicit representations of AdZX and Ad ∗Z X in terms of structure constants

AdZX = [Z,X] = CZ,X:UU .

Ad∗ZX = CZ,U :V g(X,V )g−1(U,W )W = g(X, [Z,U ])g−1(U,W )W . (58)

where the summation over repeated ”indices” is performed, one finds that consistency conditions
are identically satisfied provided the generators X and Y have a non-vanishing norm. The reason
is that the contributions coming from ∇ZX and ∇ZY cancel each other.

When one of the generators, say X, appearing in the inner product has a vanishing norm so
that one has g(X,Y ) = 0, for any generator Y , situation changes! The contribution of ∇ZY term
to the consistency conditions drops away and using Eqs. (57) and (58) one obtains the following
consistency conditions

CZ,X:Ug(U, Y ) + CX,Y :Ug(U,Z) = −X · g(Z, Y ) . (59)

Note that summation over U is carried out. If X is isometry generator (this need not be the case
always) the condition reduces to a simpler form:

CX,Z:Ug(U, Y ) + CX,Y :Ug(Z,U) = g([X,Z].Y ) + g(Z, [X,Y ]) = 0 . (60)

These conditions have nice geometric interpretation. If the matrix elements are regarded as ordi-
nary Hilbert space products between the isometry generators the conditions state that the metric
defining the inner product behaves as a scalar in the general case.

5.2 Consistency conditions for the radial Virasoro algebra

The action of the radial Virasoro in nontrivial manner in the zero modes. Therefore isometry
interpretation is excluded and consistency conditions do not make sense in this case. One can
however consider the possibility that metric is invariant or suffers only an overall scaling under
the action of the radial scaling generated by L0 = rMd/drM . Since the radial integration measure
is scaling invariant and only powers of rM/r0 appear in Hamiltonians, the effect of the scaling
rM → λrM on the matrix elements of the metric is a scaling by λka+k̄b). One can interpret this by
saying that scaling changes the values of zero modes and hence leads outside the symmetric space
in question.

Invariance of reduced matrix element obtained by dividing away the powers of the scaling factor
is achieved if the metric contains the conformal factor
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S =
1

∆u
f(
ri
rj

) , (61)

where ri are the extrema of rM interpreted as height function of X3 and f is a priori arbitrary
positive definite function. Since the presence of f presumably gives rise to renormalization cor-
rections depending on the size and shape of 3-surface by scaling the propagator defined by the
contravariant metric, the dependence on the ratios ri/rj should be slow, logarithmic dependence.
Also the dependence on the Fourier components of the solid angles Ω(rM ) associated with the
rM = constant sections is possible.

5.3 Explicit conditions for the isometry invariance

The identification of the Lie-algebra of isometry generators has been proposed but cannot provide
any proof for the existence of the infinite parameter symmetry group at this stage. What one can
do at this stage is to formulate explicitly the conditions guaranteing isometry invariance of the
metric and try to see whether there are any hopes that these conditions are satisfied. It has been
already found that the expression of the metric reduces for light cone alternative to the sum of
two boundary terms coming from infinite future and from the boundary of the light cone. If the
contribution from infinitely distant future vanishes, as one might expect, then only the contribution
from the boundary of the light cone remains.

A tedious but straightforward evaluation of the second variation (see Appendix of the book)
for Kähler action implies the following form for the second variation of the Kähler action

δ2S =
/a=∞

a=0
Inβkl δh

kDβδh
l , (62)

where the tensor Iαβkl is defined as partial derivatives of the Kähler Lagrangian with respect to the
derivatives ∂αhk

Iαβkl = ∂∂αhk∂∂βhlLM . (63)

If the upper limit a =
√

(m0)2 − r2
M = ∞ in the substitution vanishes then one can calculate

second variation and therefore metric from the knowledge of the time derivatives ∂nhk and ∂nδhk

on the boundary of the light cone only.
Kähler metric can be identified as the (1, 1) part of the second variation. This means that one

can express the deformation as an element of the isometry algebra plus a arbitrary deformation in
radial direction of the light cone boundary interpretable as conformal transformation of the light
cone boundary. Radial contributions to the second variation are dropped (by definition of Kähler
metric) and what remains is essentially a deformation in S2 degrees of freedom.

The left invariance of the metric under the deformations of the isometry algebra implies an
infinite number of conditions of the form

JCg(JA, JB) = 0 , (64)

where JA, JB and JC denote the generators of the isometry group. These conditions ought to fix
completely the time derivatives of the coordinates hk for each 3-surface at light cone boundary
and therefore in principle the whole minimizing four-surface provided the initial value problem
associated with the Kähler action possesses unique solution. What is nice that the requirement of
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isometry invariance in principle provides solution to the problem of finding absolute minima of the
Kähler action.

These conditions, when written explicitly give infinite number of conditions for the time deriva-
tive of the generator JC (we assume for a moment that C is held fixed and let A and B run) at the
boundary of the light cone. Time derivatives are in principle determined also by the requirement
that deformed surface corresponds to an absolute minimum of the Kähler action. The basis of δH
scalar functions respecting color and rotational symmetries is the most promising one.

5.4 Direct consistency checks

If duality holds true, the most general form of the configuration space metric is defined by the
fluxes Qα,βm , where α and β are the coefficients of signed and unsigned magnetic fluxes. Present
is also a conformal factor depending on those zero modes, which do not appear in the symplectic
form and which characterize the size and shape of the 3-surface. [t, t] ⊂ h property implying
Ricci flatness and isometry property of canonical transformations, requires the vanishing of the
fluxes Qα,βm ({HA,m 6=0, {HB,n6=0, HC,p6=0}}) associated with double commutators and poses strong
consistency conditions on the metric. If n labelling canonical generators has half integer values then
the conditions simply state conformal invariance: generators labelled by integers have vanishing
norm whereas half-odd integers correspond to non-vanishing norm. Isometry invariance gives
additional conditions on fluxes Qα,βm . Lorentz invariance strengthens these conditions further. It
could be that these conditions fix the initial values of the imbedding space coordinates completely.

5.5 Why some variant of absolute minimization might work?

Posing the invariance under canonical transformations and radial Virasoro to the initial values
of the time derivatives of the imbedding space coordinates at δH associates more or less unique
space-time surface X4(X3) to given X3 on δH as an extremal of Kähler action (or of any action,
as a matter of fact!). Furthermore, in principle Kähler function can calculated and one can also
understand how to integrate over the zero modes in the functional integral over all 3-surfaces.

Absolute minimization has served for one and half decades as an educated guess for the con-
dition selecting the preferred extremals of Kähler action. Only quite recently (I am writing this
in the beginning of 2005) emerged the idea that space-time surfaces could be regarded as hyper-
quaternionic sub-manifolds of hyper-octonionic space HO = M8 with the property that hyper-
complex structure is fixed in a local manner at each point of space-time surface [E2]. This means
a selection of a preferred hyper-octonionic imaginary unit. The automorphisms leaving this selec-
tion invariant form group SU(3) identifiable as color group. The selections of hyper-quaternionic
sub-space under this condition are parameterized by CP2. This means that each 4-surface in HO
defines a 4-surface in M4 × CP2 and one can speak about a number-theoretic analog of sponta-
neous compactification having of course nothing to do with dynamics. It would be possible to make
physics in two radically different geometric pictures: HO picture and H = M4 × CP2 picture.

This assumption is consistent with the requirement that space-time surface is an extremal of
Kähler action provided that the notion of Kähler calibration makes sense [E2]. The implication
is however that absolute minimization is replaced with the requirement that the absolute value
of Kähler action is minimized separately in each region where Kähler Lagrangian has definite
sign. Obviously the extremals are as near as possible to vacuum extremals. There are good
reasons to expect that this is guaranteed if the extremals minimize rest energy and possibly also
other conserved quantities and it would become possible to deduce the initial values of the time
derivatives of the imbedding space coordinates at space-like causal determinant X3 from energy
minimization numerically and hence also construct the space-time surfaces from data at X3

The basic question is whether the absolute minimization of Kähler action or some variant of
this condition indeed leads to the proposed realization of canonical and radial conformal symme-
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tries, implies electric-magnetic duality and gives same Kähler function as the group theoretical
construction. There are indeed some hopes since there is remarkable consistency between these
approaches.

1. The two constructions predict complete degeneracy of the metric for 3-surfaces having zero-
dimensional CP2 projection and the dynamical group of vacuum symmetries for Kähler action
corresponds to the zero modes of constructed configuration space metric.

2. Whatever the rule associating to X3 the space-time surface X4(X3) as a particular extremal
of the Kähler action is, the rule must be such that the second variation of the Kähler action
around the extremal reduces to a boundary term expressible as an integral over X3 belonging
to δH. The second variation around absolute minimum indeed has this property. Quite
generally, the set of minima of function tends to possess symmetries as a function of its
parameters and therefore absolute minima are the most promising candidates for the extrema
with the required symmetries.

3. The requirement that configuration space metric is Euclidian in vibrational degrees of freedom
requires Diff4 degeneracy of the configuration space metric and absolute minimization gives
this degeneracy according to the previous argument. The quadratic form defined by the (1, 1)
part of the Kähler function should be negative definite. It seems that isometry invariance
and Diff degeneracy together guarantee the Euclidian signature of the metric (line element
is negative for vibrational deformations).

(a) The second variation of the Kähler function is certainly negative for the maximum of
Kähler function (most probable 3-space).

(b) Negativity requirement for the second variation implies that second variation reduces to
(1, 1) form at the maximum of the Kähler function as is easy to find by elementary study
of the properties of quadratic forms in one complex dimension (general situation reduces
to 1-dimensional situation by considering deformations in single complex direction only).

(c) Isometry invariance clearly guarantees the negativity of vibrational line element every-
where.

Even more, the group theoretical construction of the configuration space metric relies heavily
on the basic properties of Kähler action and is actually guided by these properties.

1. The Kähler structure of the light cone boundary not unique on purely group theoretical
grounds and different Kähler structures are parametrized by SO(3, 1)/SO(3). The Kähler
structure for given Y 3 is fixed uniquely by the requirement that the subgroup SO(3) char-
acterizing the structure for given Y 3 acts as the isotropy group of the classical 4-momentum
assigned to Y 3 by absolute minimization of the Kähler action.

2. Canonical transformations of S2 ×CP2 correspond to zero modes and act also as dynamical
symmetries in vacuum sector; the canonical invariance of Kähler electric field is realized in
excellent approximation for the nearly flat space-time surfaces; the metric deduced from sym-
metry considerations has same peculiar vacuum degeneracy as the Kähler metric associated
with Kähler action.

3. Coset space decomposition ∪iG/Hi implies spin glass analogy, which also follows directly
from the vacuum degeneracy of the Kähler action. Vacuum degeneracy is crucial for many
applications of TGD.
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6 Appendix: General coordinate invariance and Poincare
invariance for H = M 4

+ × CP2 option

H = M4×CP2 option is consistent both with the new about the relationship between inertial and
gravitational energy and cosmology, and allows both Poincare invariance and general coordinate
invariance realizing thus the original TGD dream. For the sake of completeness also the notion of
Diff4 invariant Poincare transformations stimulated by the M4

+ × CP2 option is discussed below.

6.1 Diff4 invariant representation of M4 translations in C(δH)

Concerning the definition of U -matrix it is important to define what one exactly means with
four-momentum eigen states. The factorization of U -matrix to a tensor product of cosmological
U -matrix and local U -matrices solves this problem trivially since Poincare invariance is excellent
approximation outside the light cone boundary. This factorization became obvious only after the
emergence of the TGD as a generalized number theory vision and it was necessary to attack the
problem of defining what Diff4 invariant Poincare transformations might mean. The following
argument describes a modification of Poincare algebra allowing to achieve this goal.

In fact, the breaking of Poincare symmetry caused by the light cone boundary turns out to
play a crucial role in the definition of S-matrix and the physical interpretation of the theory. The
crucial observation is that Poincare transformations realized as transformations just moving the
4-surface like rigid body do not commute with Diff4. The reason is simply that in general the
translated 4-surface is not an absolute minimum of the Kähler action although it is an extremal of
the Kähler action: commutativity holds true for the Lorentz group of the future light cone only.
It is therefore natural to ask whether one could realize translations in a Diff4 invariant manner.
These transformations should in general deform space-time surface and should reduce to ordinary
translations for some suitably chosen set of 3-surfaces.

The problem is how to choose the subset of the 3-surfaces in question. If one requires that the
set of 3-surfaces is Lorentz invariant with respect to the Lorentz group associated with the dip of
the light cone acting as exact symmetries of the theory, so that also the energy momentum eigen
state basis is Lorentz invariant, then the choice becomes unique: the 3-surfaces are obtained as the
intersections of the space-time surfaces X4 with the set Ha×CP2, where Ha is the

√
mklmkml = a

hyperboloid of the future light cone.

One can realize M4 translations as transformations on the light cone boundary C(δH) as
follows.

1. Consider the unique space-time surfaceX4(X3) going throughX3 and denote the intersection
of this surface with light cone boundary by Y 3.

2. Consider the intersection Z3(a) of this surface with a = constant (proper time of M4
+) hyper-

boloid of H. Perform an infinitesimal translation for this surface. This translation induces
unique deformation of X4(X3) and of Y 3 so that the action of infinitesimal translations on
C(δH) is uniquely defined provided one restricts oneself to a given a = constant surface.

This Diff4 invariant representation for the translations differs from the ordinary representa-
tions in two important respects.

1. The representations of the infinitesimal translations associated with different values of cosmic
time a are not identical and do not commute. This implies the breaking of Poincare invariance
in a cosmic scale!
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2. One can associate to any basis of energy momentum eigen-states a unique value of cosmic
time a. The situation is quite contrary to that encountered in a Poincare invariant theory,
where it is not possible to associate any value of the time coordinate to an energy momentum
eigen state. Since quantum jumps occur between quantum histories in TGD framework, one
encounters the problem of explaining the origin of psychological time. The original interpre-
tation of the time parameter a was as the subjective time experienced by a conscious (and
sufficiently intelligent) observer. The construction of TGD inspired theory of consciousness
[10] has however led to a radical rethinking of the concept of psychological time and shown
that this naive interpretation is not correct. In fact, the value of a is most naturally infinite
just like in ordinary quantum field theories.

The recent work suggests a more concrete identification of the Diff4 invariant Poincare. One
can identify the translation generators at a given point of the future light cone as the time trans-
lation with respect to a, as the radial translation with respect to rM and as two non-vanishing
rotation generators generating rotations in the directions orthogonal to rM . Since the third gener-
ator generating rotations around the direction defined by rM , vanishes at rM , one can say that the
remaining rotation generators commute approximately and thus represent approximately Poincare
translations. Only the time translation generator takes 3-surface out of a = constant hyperboloid
and must be defined in Diff4 invariant manner. This could spoil the closure of the Poincare
algebra or, at best, could lead to a deformation of the Poincare algebra.

The requirement that S-matrix is Poincare invariant, requires that the momentum generators
pk appearing in Super Virasoro generators and in time evolution operator correspond to Diff4

invariant momentum generators pk(a) at the limit, when the value of the light cone proper time
approaches infinity. At this limit Diff4 invariant generators generate an algebra isomorphic to
the ordinary Poincare algebra and one can construct momentum conserving S-matrix provided
that the time parameter t defining time evolution operator U = U(−t, t) varies in the entire range
(−∞,∞).

6.2 Diff invariant Poincare algebra as a deformation of Poincare algebra?

In the following the possibility that Diff invariant Poincare algebra at the limit a → ∞ might
correspond to a nontrivial deformation of Poincare algebra, is discussed.

Recall first, that the concept of Diff4 invariant Poincare algebra arises in the following manner.

1. The configuration space of the TGD consists of all 3-surfaces in the Cartesian product of the
future light cone M4

+ (points mk of M4 satisfying mklm
kml = (m0)2 − (m)2 ≥ 0,m0 ≥ 0).

2. Kähler geometry for this space is defined in terms of the Kähler function, which corresponds to
the absolute minimum for Kähler action, which is Diff4 invariant. This definition associates
to each 3-surface X3 a unique space-time surface X4(X3), the classical history associated
with the 3-surface. In the first part of the book it was explained how this concept defines the
quantum counterpart of the Thom’s catastrophe theory: in this theory discontinuous jumps
take place along ’Maxwell line’ rather than along the ’fold line’: this is what is known to
happen in phase transitions.

3. Kähler action is same for 4-surface and its Poincare translate but Poincare transformation
does not in general map absolute minimum to an absolute minimum: exception is formed
by the Lorentz transformations mapping light cone to itself. Therefore Poincare invariance
is broken and ordinary representations of Poincare group are not Diff4 invariant.

4. One can overcome the problem by modifying the concept of Poincare invariance. By Diff4

invariance of state functions, one can consider instead of 3-surface X3 the 3-surface X3
a , the
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intersection X4(X3) with the cartesian product of light cone proper time constant hyper-
boloid Ha = {mk|mklm

kml = a2} with CP2. X3
a is invariant under Lorentz group and one

can define the action of an infinitesimal Poincare transformation by requiring that the ac-
tion on X3

a is ordinary infinitesimal Poincare transformation: the action on other 3-surfaces
on X4(X3) is fixed by the requirement that X4(X3) is replaced with absolute minimum
surface associated with the infinitesimal Poincare translate of X3

a . The result is that abso-
lute minimum surface suffers in general a nontrivial deformation and even its topology can
change.

5. This Diff invariant realization of Poincare algebra depends on the value of the proper time
parameter a and gives rise to a continuous family of nonidentical unitarily related energy
momentum eigen state basis. For finite values of a one expects that the resulting algebra
is not closed but at the limit a → ∞ one expects that Diff4 invariant Poincare algebra
is isomorphic with ordinary Poincare algebra. The generators Pk(a → ∞) are assumed
to appear in the Super Virasoro conditions defining also time development operator and
S-matrix commuting with Poincare transformations.

There are several open questions related to the Diff4 invariant Poincare algebra at the limit
a→∞. If algebra is closed, do commutation relations get deformed? If the algebra does not close,
should one try to extend the Poincare algebra in order to get a closed algebra? Could quantum
groups have some relevance in the problem? The answers to these questions seem to be beyond
calculational capacities since it is difficult to imagine how one could deduce analytic expressions
for the action of Diff4 invariant Poincare transformations for such a complicated structure as the
space of all possible 3-surfaces in M4

+ × CP2 is.
Quite a surprise in this respect was the paper of Kehagias and Meessen [42], where it was shown

that Poincare group allows deformation with an exact Lorentz algebra: the structure might raise
the concept of Diff4 invariant Poincare transformations at the limit a → ∞ on a sound footing
and even predict nontrivial effects. What happens in the deformation is a modification for the
expression of energy P0(diff): the new energy is certain function β(P0) of the ’old’ energy P0. The
old energy corresponds to the energy associated with ordinary Poincare transformations and new
energy to the energy associated with Diff4 invariant Poincare transformations. Lorentz invariance
corresponds to the Lorentz transformations leaving the future light cone invariant. The only thing,
which one cannot calculate at this stage is the explicit form of the function β(P0) (it could be also
trivial!). The preferred time like direction implied by the dependence of the commutators relations
on energy corresponds naturally to the special time direction defined by the classical momentum
of 3-surface Y 3.

It is worthwhile to write the explicit expressions for the deformed commutation relations

[Ji, Jj ] = iεijkJk ,

[Ji,Kj ] = iεijkKk ,

[Ji, Pj ] = iεijkPk ,

[Ki,Kj ] = iεijkJk ,

[Ji, P0] = 0 ,

[Pi, Pj ] = 0 ,

[Ki, P0] = iα(P0)Pi ,
[Ki, Pj ] = iβ(P0)δij ,

α(P0)
dβ(P0)
dP0

= 1 . (65)
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Deformation is trivial at the limit

α(P0) = 1 ,

β(P0) = P0 . (66)

The deformed algebra leaves invariant the lenghts of the deformed four-momentum vector and
Pauli-Lubanski vector

m2 = mklP
k(d)P l(d) ,

W 2(d) = mklW
k(d)W l(d) ,

Pk(d) ↔ (β(P0), Pk) ,

Wi(d) ↔ (W0 = J · P,Wi = β(P0)Ji + εijkPjKk) .

(67)

The effect of the deformation is clearly to replace the expression of the energy with a more general
one.

Consider first the possible application of the concept to Quantum TGD at particle physics
length scales. The non-triviality of S-matrix in Quantum TGD follows from the parametric de-
pendence of β(P0) on the light cone proper time a. There are good reasons to expect that this
dependence is extremely weak at CP2 length scale. Although the deviation from triviality might
be extremely small, the criticality of TGD Universe at quantum level is expected to imply initial
value sensitivity and large deviations of S-matrix from unit matrix in particle physics length scales.
The essential point is the instability of the 3-surface (particle) to topological decay into several
3-surfaces: only a small deformation (say small time translation) can cause this decay.

In long length scales (macroscopic, astrophysical, cosmological) the difference between Poincare
energy and Diff4 invariant Poincare energy could be large.

1. Diff4 invariant energy vanishes, when absolute minimum 4-surface is static since time trans-
lations correspond to Diff4 transformations and must leave the state invariant. By the same
argument, Diff invariant energy is just a multiple for the frequency of the oscillation for small
periodic deformations and one obtains just a harmonic oscillator. For non-periodic surfaces
near these simple surfaces the previous equation makes possible to define Diff4 invariant en-
ergy. These observations suggest that for simple systems Diff4 invariant energy is roughly
the vacuum subtracted energy, vacuum energy defined as the ordinary Poincare invariant
energy of the static configuration.

2. The function β(P0), the deformed energy, can depend on 3-surface via the isometry invariant
parameters describing the general geometric properties like the shape and the size of the
3-surface.

3. At the classical limit of the theory it should be generally possible to identify the eigen value
of the quantum energy β(P0) with its classical counterpart β(P0) , where P0(X3) is the
classical conserved Poincare energy associated with the absolute minimum surface X4(X3).
For state functionals dispersed in a set of 3-surfaces with different values of P0(X3) the
identity of classical and quantum energies requires that the functional form of the classical
counterpart for the Poincare invariant energy β(P0(X3)) must depend on 3-surface in the
manner dictated by the condition

β(P0(X3), X3) = β0 ≡ β(P0(X3
0 ), X3

0 ) . (68)
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The parametric dependence is only on those parameters, which are Poincare invariant and
the two dependences on X3 must compensate each other in the expression of the energy.
One must fix the value of β0 by some criterion for some surface. A reasonable choice is a
surface, which corresponds to a periodic oscillation around static ground state, for which
Diff4 invariance implies oscillator spectrum.

4. An interesting (but perhaps purely formal) possibility is that the dispersion relation P0 =
m+ p2

2m , characteristic to the Galilei invariance and resulting approximately at non-relativistic
limit, is in fact an exact relationship implied by a suitable deformation of the Poincare algebra

β2(P0) = 2mP0 −m2 ≥ 0 ,

α(P0) =
√
β

m
. (69)

Effective Galilei invariance would result from the deformation of the Poincare group. The
alarming feature is that this deformation depends on the particle mass but this is in ac-
cordance with the dependence of β on 3-surface since each particle corresponds to certain
classical surface at semiclassical limit of TGD. The reduction of the ordinary Poincare in-
variance to effective Galilei invariance (but ”cosmological” Lorentz transformations acting as
exact symmetries!) would be implied basically by the absolute minimization of the Kähler
action.
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